Схема включения двигателя

Способы подключения электродвигателей

Вначале рассмотрим разницу между устройствами 380 и 220 вольт. Настолько очевидна, насколько непонятна непосвященным. Привыкли, каждый домашний прибор подключается двумя проводами, один является фазой, второй – схемной землей. Большая часть техники заземляется. Если речь касается однофазных двигателей, делается на случай пробоя обмотки-корпус. Фаза появится на кожухе – хорошего мало. Рассмотрим способы подключения электродвигателей согласно типу, начнем количеством фаз – одна или три.

Трехфазные и однофазные двигатели

Схемы подключения двигателя звезда, треугольник

Предваряя обсуждение подключения двигателя звезда/треугольник, начитаем теорию. Трехфазный и однофазный двигатели снабжены иногда тремя проводами подключения. Бросьте далеко ходить. Возьмем следующие два случая:

    Трехфазный двигатель имеет внутреннюю коммутацию обмоток схемой звезда. Полюсы снабжены одной общей точкой. Три фазы подключаются к противоположным концам обмоток. Катушки абсолютно идентичные, одинаковые. Внутри создается вращающееся движущееся поле, за счет которого движется вал. Ротор представлен барабаном силумина с медными прожилками. Ток не подводится, магнитные полюсы образуют путем наведенных токов. Захватываются вращающим полем ротора, начинается движение. Особенностью конструкции назовем невозможность (без специальных мер) подключения сети 230 вольт. Потребовалось бы соединить обмотки схемой треугольника, сделать невозможно. Разумеется, статор можно вскрыть, найти общую точку, сделать три отвода, разорвав контакты меж катушками. Второй особенностью двигателя является отсутствие нулевого провода. Многих положение дел ставит в тупик – куда девается ток? Заряды двигаются по проводам меж фазами. Закон электротехники гласит: для подключения трех фаз нагрузке необязательно иметь общий провод, если потребление трех ветвей одинаковое. В противном случае понадобится нейтраль предоставить. Жизненный пример: допустим, нужно подключить на 380 вольт электрочайник. Маразм? Каждая фаза амплитудой 230 вольт, рабочие хотят кипятку – невозможно отказать. Берем одну из фаз, другой вывод вилки вешаем на нейтраль. Учтите, фазы в пределах одного потребителя нужно нагружать поровну (грубо говоря, по чайнику каждой линии дайте), иначе негативные последствия коснутся питающего трансформатора подстанции.

Электрические коммутации двигателя

Итак, лежит два двигателя, видом похожие, подключать нужно разным образом. Важной частью корпуса выступает схема подключения электродвигателя. Расположена на шильдике, выбита на кожухе. Становится понятно, на сколько фаз рассчитан мотор, как врубить в цепь. Информация отсутствует – попробуем доработать недочет своими руками. Понадобится китайский тестер.

У трехфазного двигателя три контакта попарно будут давать одинаковое сопротивление, равное удвоенному значению номинала обмотки. Мотор 230 вольт результаты измерений даст неодинаковые:

  • Самый большой показатель тестера меж фазными концами. Напряжение 220 вольт подается напрямую одному, другому через конденсатор. Емкость сильно зависит от мощности, скорости вращения вала. Параметр определяет средняя нагрузка вала в рабочем режиме.
  • Наименьшее значение образуется меж концами рабочей обмотки.
  • Третий номинал занимает промежуточное положение. Сумма с сопротивлением рабочей обмотки равняется первому пункту списка.

Нейтраль присоединяем меж обмотками, отводит ток дисбаланса. Толщина проводки вдвое меньше, нежели фаз. Методика отключения в нужный момент пусковой обмотки использует пускозащитные реле. Вручную не контролируют.

Вопрос приобретения узла тесно касается использования специальных справочников. Чужеродное пускозащитное реле с данным типом электродвигателя использовать категорически нельзя. Велика вероятность некорректной работы, выхода прибора из строя. Практически умельцы вручную обрывают цепь. Способ неправильный, имеет право существовать.

Добавим, что пропадание одной фазы может негативно сказаться на некоторых типах моторов. Экспериментируя с агрегатом, реализуя подключение двигателя звезда-треугольник, старайтесь избегать ситуаций. Принято осуществлять пуск специальными защитными автоматами, вырубающими питание при возникновении опасности.

Синхронные, асинхронные, коллекторные двигатели

Помимо количества фаз видим конструктивный признак. С точки зрения потребителя момент является главным. Коллекторные двигатели используются бытовой техникой преимущественно. Поставить на замену асинхронные с аналогичными параметрами, нерентабельно. Коллекторный двигатель получается намного меньшего размера (зато перегревается сильнее). Важно определить тип. Хотя по большому счету трехфазные электродвигатели асинхронного типа являются доминирующим звеном сельскохозяйственных, гаражных, других применений. Вопрос питания обсуждается отдельно.

Обсудим три типа двигателей:

  1. Коллекторные снабжают двумя-четырьмя выводами. Последнее делает возможным реверс. Поменяем полярность включения статора, ротора. Коллекторные двигатели отличаются возможность работы от переменного и постоянного тока. В последнем случае характеристики получаются оптимальными. Становится возможным благодаря постоянно переключающимся рабочим обмоткам ротора (секции коллектора). Поле статора постоянное. Главное, чтобы присутствовала нужная полярность. Схема подключения электродвигателя постоянного тока напоминает переменный. Скорость вращения вала регулируется амплитудой питающего напряжения. Либо берется делитель, сформированный силовым ключом, либо отсекается часть цикла синусоиды. Эффект получается схожий: падает действующее значение напряжения.
  2. Асинхронные двигатели по факту доминирующими в промышленности. Реверс образуется изменением полярности включения пусковой обмотки однофазных двигателей, коммутацией последовательности фаз трехфазных. Изменение скорости реализуется аналогичным путем. Варьирование амплитуды питающего напряжения. Асинхронные двигатели обладают плохой приспособленностью к смене скоростей. Очередная причина редкого применения в бытовой технике. Пришла пора сказать: коллекторные двигатели обычно рассчитаны на одну фазу, асинхронные питаются напряжением 380 вольт. Расстановка сил образуется, благодаря соответствующей коммутации обмоток. На практике реализуется подключением электродвигателя треугольником, звездой. Удается воспроизвести вращающееся поля внутри статора. Почему схема подключения асинхронного двигателя звездой непригодна напряжению 230 вольт. Приходится создать сдвиги фаз, становится возможным для схемы треугольника. На одну обмотку подается сетевое напряжение 230 вольт, на вторую – сдвинутое конденсатором на 90 градусов, на третьей образуется разница, изменяемая по нужному закону. Далеко от идеала: подключения электродвигателя звездой и треугольником неравноценны.

Давайте пойме отличие синхронных двигателей от асинхронных. Литература вопрос тщательно обходит. Ответ лежит на поверхности: поле статора синхронного двигателя намного сильнее, ротор намагничен (либо фазный) поэтому вращение не проскальзывает. Обеспечивается синхронность вращения вала питающему напряжению. Частота определена количества полюсов. Чтобы решить проблемы со стартом (см. выше), используются, например, такие методики:

  1. Вал синхронного двигателя с барабаном, снабженным беличьей клеткой, врубается при пуске через реостат. Образуется поле, как в асинхронном двигателе, захватывающее вал, служит стартовым рычагом. Обороты набраны – цепь разрывается. Реостат нужен погасить токи индукции. Выбирайте сопротивление в 7-8 больше, нежели номинал «беличьей клетки».
  2. Иногда заметите на роторе синхронного двигателя – не поверите – коллектор. Старт выполняется за счет щеток, в дальнейшем из работы выключаются.
Читать еще:  Схема подключения переключателя

И если подключение асинхронного двигателя звезда-треугольник изъедено сполна, синхронные двигатели обсуждаются мало. Встречаются нечасто.

Схема подключения электродвигателя

Нас окружает огромное количество электроприборов, почти две трети из них оборудованы электродвигателями с разными мощностными и электрическими характеристиками. После списания прибора в утиль в большинстве случаев электродвигатели сохраняют работоспособность и могут еще довольно долго послужить в виде самодельных электронасосов, точил, станков, вентиляторов и газонокосилок. Нужно только знать, какая схема подключения электродвигателя использована в данном конкретном приборе, и как правильно выполнить подключение асинхронного или коллекторного электропривода к сети.

Какие конструкции электродвигателя можно подключить своими руками

Из большого количества моделей и конструкций современных электромоторов в домашних условиях для самоделок можно выполнить подключение электродвигателя лишь нескольких схем:

  • Асинхронного трехфазного электродвигателя с обмоткой звездой и треугольником;
  • Асинхронного электродвигателя с однофазным питанием;
  • Коллекторного электромотора со щеточной схемой возбуждения потока.

Для питания бытовых приборов и электродвигателей применяется подключение к однофазной сети с напряжением в 220 В. К такой сети можно подключить и трехфазный двигатель на 380 В. Но даже в таком варианте подключения «выдавить» из электродвигателя боле 2,5-3 кВт мощности без риска сжечь электропроводку практически невозможно. Поэтому в гаражах и столярных мастерских владельцы выполняют проводку трехфазного электропитания, позволяющего использовать мощные двигатели на 5-10 кВт и более.

Что нужно знать для подключения электродвигателя своими руками

Общий принцип работы электродвигателя известен всем еще со школы. Но на практике знания о вращающихся магнитных потоках и ЭДС, индукционных процессах и эквивалентах правильно выполнить даже простейшее подключение однофазного электродвигателя явно не помогут, поэтому для работы будет достаточно:

  • Понимать суть конструкций двигателей;
  • Знать предназначение обмоток и схему подключения;
  • Ориентироваться во вспомогательных устройствах, таких как балластные сопротивления и пусковые конденсаторы.

Советская промышленность выпускала электродвигатели с обязательной металлической табличкой, приклепанной к корпусу, на которой был указан тип и модель, напряжение питания, и даже рисовалась схема подключения. Позже на табличке остались только модель, мощность, потребляемый ток и номер. Сегодня на современном электродвигателе с трудом можно найти маркировку модели, и не более.

Поэтому при выборе схемы подключения необходимо узнать из справочника тип и мощность, прозвонить мультиметром проводку относительно корпуса и между выводами на жгуте. Только после того, как будет достоверно установлено, что нет короткого замыкания на корпусе, определены контакты каждой из обмоток, можно приступать к подключению.

Типовые схемы подключения электродвигателя

Наиболее простым в подключении является коллекторный двигатель со щеточным возбуждением магнитного поля ротора. Коллекторным электродвигателем оснащаются электроинструменты, стиралки, кофемолки, электромясорубки и прочие приборы, где время работы мотора одного включения небольшое, но важно, чтобы двигатель был максимально компактным, высокооборотным и мощным.

Подключение к двигателю простейшее. От однофазной сети напряжение подается через замыкаемую кнопку «Пуск» на обмотки статора и ротора последовательного соединения. Пока кнопка в нажатом состоянии, двигатель работает. На статоре может выполняться две обмотки, в этом случае с помощью переключателя двигатель способен работать на пониженной скорости вращения.

Коллекторные двигатели имеют малый ресурс и крайне чувствительны к качеству угольно-графитовых щеток, которыми через медное кольцо подается питание на ротор.

Подключение однофазного асинхронника

Устройство асинхронного электродвигателя на 220 В приведено на схеме. По сути, это стальной корпус с уложенными внутри двумя обмотками — рабочей и пусковой. Коллектор представляет собой алюминиевую цилиндрическую болванку, насаженную на рабочий вал. Преподаватели и инженеры любят подчеркивать, что у такого прибора обмоток не две, а три, имея в виду цилиндр ротора. Но практики оперируют только пусковой и рабочей обмотками.

Из всех способов и схем подключения однофазного асинхронного электродвигателя на практике используют только три:

  1. С балластными сопротивлениями на пусковой обмотке;
  2. С кнопочным или релейным пускателем и стартовым конденсатором в цепи пусковой обмотки;
  3. С постоянно включенным рабочим конденсатором на пусковой обмотке.

Кроме того, используется комбинация последних двух, в этом случае, в дополнение к рабочему конденсатору, в схеме присутствует реле или тиристорный ключ, с помощью которых в момент пуска подключается дополнительная группа стартовых конденсаторов.

Асинхронные двигатели обладают невысоким стартовым моментом вращения, поэтому для запуска приходится прибегать к подключению по схеме дополнительных устройств в виде реле пускателя, балластного сопротивления или мощных конденсаторов.

Достаточно просто подключить однофазный асинхронный электромотор с помощью балластного сопротивления и пускателя, как на схеме.

В любых однофазных асинхронных двигателях имеется две обмотки. Они могут быть изготовлены по схеме с разделением на четыре вывода или на три вывода. В последнем случае один из выводов является общим. Чтобы определить, какие контакты к какой обмотке относятся, потребуется схема двигателя, или можно прозвонить выводы мультиметром. Пара, дающая максимальное сопротивление, означает, что измерение выполнено через две обмотки одновременно, как на схеме. Далее берем оставшийся третий вывод и через него меряем поочередно, как по схеме, сопротивления на первой и второй клемме. Рабочая обмотка асинхронного однофазного двигателя будет иметь минимальное сопротивление 10-13 Ом, сопротивление пусковой будет промежуточным 30-35 Ом.

Читать еще:  Схема аварийного освещения с аккумулятором

Включение однофазных асинхронных моторов через пускатель очень простое, достаточно правильно выполнить соединение контактов с пускателем и сетевым кабелем по приведенной схеме. Управление запуском асинхронного двигателя простейшее, достаточно нажать кратковременно на кнопку пускателя, и мотор начнет работу. Выключение выполняется через обесточивание схемы. Управление асинхронными двигателями только с помощью пускателей является неэкономичным и не всегда эффективным способом раскрутить вал, особенно для высокооборотных моторов с небольшим моментом вращения.

Более экономичной является схема подключения электродвигателя 220 с конденсатором. Подключая через конденсаторы, как на приведенных схемах, получаем сдвиг фаз между двумя магнитным вращающимися потоками.

На практике отдают предпочтение схемам с одним конденсатором и комбинированной схеме с рабочим и пусковым конденсаторами. Кратковременным подключением пускового конденсатора на валу двигателя создается мощный стартовый вращающий момент, время запуска сокращается в разы.

Важно правильно подобрать емкость стартового конденсатора. Обычно для качественного запуска подключаемая к однофазному асинхроннику емкость конденсатора выбирается по схеме – на каждые 100 Вт мощности должно приходиться 7мкФ номинала.

Подключение трехфазных электродвигателей

В сравнении с однофазными трехфазные моторы обладают большей мощностью и пусковым моментом. Как правило, в домашних условиях такой электродвигатель применяется для деревообрабатывающих станков и приспособлений. При наличии трехфазной сети порядок подключения еще проще, чем у предыдущих асинхроников. Необходимо выполнить установку четырехконтактного пускателя и выполнить соединение по приведенной на корпусе схеме с контактами трехфазной сети. Такие электродвигатели допускают два вида подключений коммутацией – в виде звезды или треугольника.

Конкретные варианты соединения обмоток по схеме звезда, а чаще треугольника определяются паспортным напряжением и указаниями производителя. В случае необходимости такие электродвигатели могут также подключаться с помощью переходных конденсаторов к однофазной сети. Для этого выполняют подключение, как на схеме.

Для одного киловатта мощности необходим рабочий конденсатор емкостью в 70 мкФ и пусковой в 25 мкФ. Рабочее напряжение не менее 600 В.

Зачастую возникает проблема в определении, какие выводы относятся к обмоткам электродвигателя. Для этого можно собрать схему, приведенную на рисунке.

Ко второму зажиму подключают один из шести контактов обмоток. Вторым проводом сети, к которому подключена контрольная лампа на 220 В, поочередно касаются всех остальных контактов двигателя. При вспыхивании лампы определяют второй контакт обмотки. Проводку маркируют и убирают в сторону, а остальные контакты продолжают прозванивать по приведенной схеме. При прозвоне необходимо следить, чтобы контакты проводки не касались друг друга. Кроме того, нужно будет определить входные и выходные клеммы для каждой обмотки, прежде чем соединять их звездой или треугольником.

Заключение

Самостоятельное подключение трехфазных электродвигателей требует хороших знаний устройства и схем проверки работоспособности основных узлов. Однофазные варианты электродвигателей намного проще и не столь критичны, если допущены ошибки в определении полярности или емкости конденсатора. Но, в любом случае, при первом запуске стоит обращать внимание на нагрев корпуса и пусковых устройств, а также развиваемые электродвигателем обороты. Это поможет вовремя выявить и устранить ошибку до выхода из строя самого прибора.

Однофазные асинхронные двигатели на службе человечества

Никто глубоко не задумывался о том, как бы жили люди без такого изобретения, как электродвигатель асинхронный однофазный. Казалось бы, что такое умное слово никого не касается и витает где-то в заоблачной дали. Но этот большой помощник в быту встречается на каждом шагу.

Скажите, как можно обходиться без холодильника или пылесоса. А ведь не будь двигателя, всего этого не было бы сейчас. Предлагаем в статье узнать все подробности об этом устройстве, а дочитавшим до конца будет бонус в виде полезного справочника по асинхронным двигателям

История возникновения

Более 60 лет понадобилось многим ученым, пока однофазный асинхронный двигатель начал покорять просторы земного шара. Началось все с 1820-х годов, когда Джозеф Генри и Майкл Фарадей – открыли явления индукции и начали первые эксперименты.

В 1889-1891годах русский электротехник, поляк по происхождению, Михаил Осипович Доливо-Добровольский придумал ротор в виде “беличьей клетки”. К этому изобретению его подтолкнул доклад Феррариса «О вращающемся магнитном поле». С началом ХХ века пришло широкое внедрение электромеханических устройств.

Применение однофазных асинхронных двигателей

Известно, что однофазные двигатели уступают трехфазным по некоторым характеристикам. Однофазные моторы имеют в основном бытовое назначение:

  • пылесосы;
  • вентиляторы;
  • электронасосы;
  • холодильники;
  • машины для переработки сырья.

Для того, чтобы выполнить подключение асинхронного двигателя нужна однофазная сеть переменного тока. Такие двигатели работают при напряжении 220 Вольт и частоте 50 Гц. Прилагательное «асинхронный» указывает на то, что скорость вращения якоря отстает от магнитного поля статора.
Однофазные двигатели имеют две независимых цепи, но работают они в основном на одной, отсюда и название. Основные части двигателя:

  1. Статор (неподвижный элемент).
  2. Ротор (вращающаяся часть).
  3. Механическое соединение этих двух частей.
  4. Поворотные подшипники.

Соединение состоит из внутренних колец, установленных на закрепленных втулках вала ротора, наружных колец в защитных боковых крышках, прикрепленных к статору.

Для запуска однофазного асинхронного двигателя с пусковой обмоткой установлена ​​другая катушка. Обмотка стартера установлена ​​со смещением от рабочей катушки на 900 С. Для создания сдвига тока, в цепи однофазного двигателя имеется схема сдвига фаз. Сдвиг можно получить при помощи различных элементов. Это могут быть:

  1. Активное сопротивление.
  2. Емкостное.
  3. Индуктивное.
Читать еще:  Схема перекидного выключателя

В видео, представленном ниже, показан принцип работы однофазных асинхронных двигателей.

Принцип действия

Обмотки статора при помощи переменного тока образуют магнитные поля. Они имеют одинаковую амплитуду и частоту, но действуют в разных направлениях, поэтому статический ротор начинает вращаться.

Если в двигателе отсутствует пусковой механизм, ротор останавливается, потому что результирующий крутящий момент равен нулю. В случае, когда ротор начинает вращаться в одном направлении, соответствующий крутящий момент становится выше, когда вал двигателя продолжает вращаться в заданном направлении.

Момент запуска

Сигналом к запуску становится магнитное поле двух обмоток, вращающее подвижную часть двигателя. Оно создается 2 обмотками: главной и пусковой. Дополнительная обмотка меньшего размера является пусковой и подключается к основной схеме включения однофазного двигателя через ёмкостное или индуктивное сопротивление.

Пусковая обмотка может работать кратковременно. Более длительное время нахождения под нагрузкой может вызвать перегревание и воспламенение изолирующих элементов, что приведет к выходу из строя.

Надежность повышается за счет встраивания в схему однофазного асинхронного двигателя таких элементов как тепловое реле и центробежный выключатель. Последний отключает пусковую фазу в тот момент, когда ротор разгоняется до номинальной скорости. Отключение происходит автоматически.

Работа реле происходит следующим образом: когда обмотки нагреваются до предельного значения, установленного на реле, механизм прерывает подачу питания на обе фазы, предотвращая отказ из-за перегрузки или по любой другой причине. Это защищает от возгорания.

Возможно, вам будет интересно также почитать все, что нужно знать о шаговых электродвигателях в другой нашей статье.

Варианты подключения

Для того, чтобы мотор заработал необходимо иметь одну 220-вольтовую фазу. Это значит, что подойдет любая стандартная розетка. Благодаря этой простоте двигатели завоевали популярность в быту. Любой прибор, начиная от стиральной машины и до соковыжималки, имеет подобные механизмы в своем составе.

Известны два типа однофазных двигателей в зависимости от способа подключения:

  1. Однофазный асинхронный двигатель с пусковой обмоткой.
  2. Однофазный двигатель с конденсатором.

Схема подключения однофазного асинхронного двигателя с помощью конденсаторов изображена на рисунке.

Схема содержит пусковую обмотку с конденсатором. После ускорения ротора происходит выключение катушки. Рабочий конденсатор не позволяет размыкаться пусковой цепи, и запускающая обмотка работает через конденсатор в постоянном режиме.

Одновременно с рабочей обмоткой пусковая катушка снабжена током через конденсатор. При использовании в режиме пуска у катушки более высокое активное сопротивление. Фазовый сдвиг при этом имеет достаточную величину, чтобы началось вращение.

Допускается брать пусковую обмотку, с меньшей индуктивностью и большим сопротивлением. Запуск конденсатора осуществляется при подключении его к пусковой обмотке и временному источнику питания.

Чтобы достичь максимального значения пускового момента требуется вращающееся магнитное поле. Для этого нужно добиться положения обмоток под углом 900. При правильно рассчитанной емкости конденсатора обмотки могут быть смещены на 900 градусов. Расчет однофазного асинхронного двигателя зависит от схем подключения, которые приведены ниже.

Различные варианты подключения:

  • временное включение электрического тока на стартовую обмотку через конденсатор;
  • подача на пусковое устройство через резистор, без конденсатора;
  • запуск через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.

Расчет проводной принадлежности

Для расчета проводов, соединяющих рабочую и пусковую обмотки, понадобится омметр. Измеряется сопротивление обмоток. R рабочей обмотки должно быть ниже, чем у стартера. Например, если измерения составили 12 Ом для одной обмотки и 30 Ом для другой, то сработают обе. У рабочей обмотки поперечное сечение больше, чем у выходной.

Выбор емкости конденсатора

Чтобы определить емкость конденсатора, необходимо знать ток потребления электродвигателя. Если ток 1,4 А, то понадобится конденсатор емкостью 6 микрофарад. Также можно ориентироваться на таблицу расчета емкости конденсатора, приведенную ниже.

Проверка работоспособности

Тестирование начинается с визуального осмотра. Возможные неисправности:

  1. Если опорная часть на устройстве была сломана, это может привести к неисправностям.
  2. При потемнении корпуса в средней части идет перегрев. Бывает попадание в корпус различных посторонних предметов, это способствует перегреванию. При износе и загрязнении подшипников возможен перегрев.
  3. Когда однофазный электродвигатель на 220 вольт имеет в схеме подключения конденсатор увеличенного размера, он начинает перегреваться.

Запустить двигатель минут на пятнадцать, а затем проверить, не прогрелся ли он. Если двигатель не греется, причиной являлась увеличенная емкость конденсатора. Необходимо установить конденсатор, имеющий меньшую емкость.

Для лучшего понимания механизма работы двигателей, рекомендуем также подробнее прочитать, что такое трехфазный двигатель и как он работает.

Достоинства и недостатки

Основными плюсами являются:

  • простота конструкции;
  • повсеместная доступность однофазных сетей переменного тока 220 В при частоте 50 Гц (практически во всех районах).

К минусам можно отнести следующие обстоятельства:

  • невысокий пусковой момент двигателя;
  • низкая эффективность.

Заключение

Маломощные однофазные электродвигатели выпускаются в разной модификации и для разного назначения. Перед приобретением необходимо точно знать некоторые характеристики. Подробно с устройством данного типа двигателей можно ознакомиться, скачав книгу Алиева И. И. Асинхронные двигатели в трехфазном и однофазном режимах.

Российские производители предлагают некоторые серии устройств, имеющие мощность от 18 до 600 Вт, частоту вращения 3000 и 1500 об/мин. Все они предназначены для подключения в сеть с напряжением 127, 220 или 380 Вольт и частотой 50 Гц.

{SOURCE}

Ссылка на основную публикацию
Adblock
detector