Схема подключения люминесцентной лампы с дросселем - Всё о электрике

Схема подключения люминесцентной лампы с дросселем

Схемы подключения люминесцентных ламп

С повышением цен на электроэнергию, приходится задумываться о более экономных светильниках. Одни из таких используют осветительные приборы дневного света. Схема подключения люминесцентных ламп не слишком сложна, так что даже без особых знаний электротехники можно разобраться.

Хорошая освещенность и линейные размеры — преимущества дневного света

Принцип работы люминесцентного светильника

В светильниках дневного света использована способность паров ртути излучать инфракрасные волны под воздействием электричества. В видимый для нашего глаза диапазон, это излучение переводят вещества-люминофоры.

Потому обычная люминесцентная лампа представляет собой стеклянную колбу, стенки которой покрыты люминофором. Внутри также находится некоторое количество ртути. Имеются два вольфрамовых электрода, обеспечивающих эмиссию электронов и разогрев (испарение) ртути. Колба заполнена инертным газом, чаще всего — аргоном. Свечение начинается при наличии паров ртути, разогретых до определенной температуры.

Принципиальное устройство люминесцентной лампы дневного света

Но для испарения ртути обычного напряжения сети недостаточно. Для начала работы параллельно с электродами включают пуско-регулирующие устройства (сокращенно ПРА). Их задача — создать кратковременный скачок напряжения, необходимый для начала свечения, а затем ограничивать рабочий ток, не допуская его неконтролируемого возрастания. Эти устройства — ПРА — бывают двух видов — электромагнитные и электронные. Соответственно, схемы отличаются.

Схемы со стартером

Самыми первыми появились схемы со стартерами и дросселями. Это были (в некоторых вариантах и есть) два отдельных устройства, под каждое из которых имелось свое гнездо. Также в схеме есть два конденсатора: один включен параллельно (для стабилизации напряжения), второй находится в корпусе стартера (увеличивает длительность стартового импульса). Называется все это «хозяйство» — электромагнитным балластом. Схема люминесцентного светильника со стартером и дросселем — на фото ниже.

Схема подключения люминесцентных ламп со стартером

Вот как она работает:

  • При включении питания, ток протекает через дроссель, попадает на первую вольфрамовую спираль. Далее, через стартер попадает на вторую спираль и уходит через нулевой проводник. При этом вольфрамовые нити понемногу раскаляются, как и контакты стартера.
  • Стартер состоит из двух контактов. Один неподвижный, второй подвижный биметаллический. В нормальном состоянии они разомкнуты. При прохождении тока биметаллический контакт разогревается, что приводит к тому, что он изгибается. Согнувшись, он соединяется с неподвижным контактом.
  • Как только контакты соединились, ток в цепи мгновенно вырастает (в 2-3 раза). Его ограничивает только дроссель.
  • За счет резкого скачка очень быстро разогреваются электроды.
  • Биметаллическая пластина стартера остывает и разрывает контакт.
  • В момент разрыва контакта возникает резкий скачок напряжения на дросселе (самоиндукция). Этого напряжения достаточно для того, чтобы электроны пробили аргоновую среду. Происходит розжиг и постепенно лампа выходит на рабочий режим. Он наступает после того, как испарилась вся ртуть.

Рабочее напряжение в лампе ниже сетевого, на которое рассчитан стартер. Потому после розжига он не срабатывает. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует.

Эта схема называется еще электромагнитный балласт (ЭМБ), а схема работы электромагнитное пускорегулирующее устройство — ЭмПРА . Часто это устройство называют просто дросселем.

Недостатков у этой схемы подключения люминесцентной лампы достаточно:

  • пульсирующий свет, который негативно сказывается на глазах и они быстро устают;
  • шумы при пуске и работе;
  • невозможность запуска при пониженной температуре;
  • длительный старт — от момента включения проходит порядка 1-3 секунд.

Две трубки и два дроссели

В светильниках на две лампы дневного света два комплекта подключаются последовательно:

  • фазный провод подается на вход дросселя;
  • с выхода дросселя идет на один контакт лампы 1, со второго контакта уходит на стартер 1;
  • со стартера 1 идет на вторую пару контактов той же лампы 1, а свободный контакт соединяют с нулевым проводом питания (N);

Так же подключается вторая трубка: сначала дроссель, с него — на один контакт лампы 2, второй контакт этой же группы идет на второй стартер, выход стартера соединяется со второй парой контактов осветительного прибора 2 и свободный контакт соединяется с нулевым проводом ввода.

Схема подключения на две лампы дневного света

Та же схема подключения двухлампового светильника дневного света продемонстрирована в видео. Возможно, так будет проще разобраться с проводами.

Схема подключения двух ламп от одного дросселя (с двумя стартерами)

Практически самые дорогие в этой схеме — дросселя. Можно сэкономить, и сделать двухламповый светильник с одним дросселем. Как — смотрите в видео.

Электронный балласт

Все недостатки описанной выше схемы стимулировали изыскания. В результате была разработана схема электронного балласта. Она которая подает не сетевую частоту в 50Гц, а высокочастотные колебания (20-60 кГц), тем самым убирая очень неприятное для глаз мигание света.

Один из электронных балластов — ЭПРА

Выглядит электронный балласт как небольшой блок с выведенными клеммами. Внутри находится одна печатная плата, на которой собрана вся схема. Блок имеет небольшие габариты и монтируется в корпусе даже самого небольшого светильника. Параметры подобраны так, что пуск происходит быстро, бесшумно. Для работы больше никаких устройств не надо. Это так называемая безстартерная схема включения.

На каждом устройстве с обратной стороны нанесена схема. По ней сразу понятно, сколько ламп к нему подключается. Информация продублирована и в надписях. Указывается мощность ламп и их количество, а также технические характеристики устройства. Например, блок на фото выше обслуживать может только одну лампу. Схема ее подключения есть справа. Как видите, ничего сложного нет. Берете провода, соединяете проводниками с указанными контактами:

  • первый и второй контакты выхода блока подключаете к одной паре контактов лампы:
  • третий и четвертый подаете на другую пару;
  • ко входу подаете питание.
Читать еще:  Схема проходного выключателя с двух мест

Все. Лампа работает. Ненамного сложнее схема включения двух люминесцентных ламп к ЭПРА (смотрите схему на фото ниже).

ЭПРА для двух ламп дневного света

Преимущества электронных балластников описаны в видео.

Такое же устройство вмонтировано в цоколь ламп дневного света со стандартными патронами, которые еще называют «экономлампами». Это аналогичный осветительный прибор, только сильно видоизмененный.

Это тоже люминесцентные лампы, только форма другая

Обзор схем подключения люминесцентных ламп

Конструкция люминесцентной лампы, со времени своего изобретения в 19 веке, практически не претерпела изменений. Изменялись и совершенствовались приборы и схемы для их подключения в сеть. В настоящее время актуальны и надежно работают электромагнитные и электронные устройства для люминесцентных светильников. У каждого из них есть свои достоинства и недостатки.

Варианты соединения светильника дневного света

Люминесцентная лампа (дневного света) представляет собой герметичный сосуд наполненный газом. С двух сторон в него впаяны электроды с вольфрамовыми нитями. Свечение газа под воздействием электричества и позволяет получить освещение.

Чтобы газ в колбе начал светиться, на электроды подается и кратковременно поддерживается высокое напряжение.

Вольфрамовые нити разогревают газ, и он начинает светиться. Когда газ разгорится и начнет источать свет, напряжение спадает и поддерживается в так называемом, тлеющем режиме.

Для запуска и поддержания свечения в люминесцентных лампах были разработаны несколько схем подключения к электрической сети:

  1. С использованием классического электромагнитного балласта (ЭмПРА) – одна лампа и один дроссель.
  2. Две трубки и два дросселя.
  3. Подключения двух ламп от одного дросселя.
  4. Электронный балласт.
  5. Используя умножитель напряжения.

Использование электромагнитного балласта (ЭмПРА)

Стандартная схема с использованием электромагнитного балласта была придумана в 1934 году американцами, и в 1938 уже повсеместно использовалась в США. Она проста и включает в себя помимо лампы дроссель, стартер и конденсатор.

Одна лампа и один дроссель

Дроссель представляет собой индуктивное сопротивление и может накапливать ЭДС самоиндукции. Стартер — это небольшая неоновая лампочка, имеющая биметаллический контакт и конденсатор. Конденсатор стартера служит для подавления радиопомех, а параллельный дросселю для коррекции мощности.

После включения в сеть ток течет через дроссель на спираль лампы, потом через стартер на вторую спираль. Дроссель начинает накапливать электрический заряд. По схеме вначале течет слабый ток, ограниченный сопротивлением стартера. Контакты стартера нагреваются и замыкаются. Ток в схеме резко возрастает, но его безопасную величину обеспечивает дроссель.

Поэтому дроссель и называют – пускорегулирующий аппарат. Большой ток позволяет спиралям разогреть газ в колбе. В это время, контакты стартера остывают и размыкаются, через стартер ток уже не течет. Но дроссель успел накопить энергию и уже отдает ее на спирали лампы. Она начинает светиться. Дроссель, отдав накопленный заряд, в дальнейшем выступает как сопротивление. Поддерживает только тлеющий разряд, позволяя лампе гореть. Стартер уже выключен из схемы и не работает до следующего пуска.

Процесс пуска занимает доли секунды, но может незаметно для глаз, повторится несколько раз.

Достоинства и недостатки

Схема обладает рядом достоинств:

  • Дешевые и доступные комплектующие.
  • Достаточно проста.
  • Надежна.

По сравнению с современным электронным, дроссельное устройство имеет весомые недостатки:

  • Избыточный вес.
  • довольно продолжительное время запуска.
  • Небольшую надежность при низкой температуре.
  • Большее потребление энергии.
  • Шумный дроссель.
  • Нестабильный световой поток.

Две трубки и два дросселя

Применение в одном светильнике двух пар дросселей и ламп ведет к утяжелению и увеличению конструкции. Каждая из пар, имеет свой стартер. Мощность дросселя и лампы в этом случае совпадает, стартер применяется на 220 вольт.

Две схемы с использованием электромагнитного балласта работают в таком случае параллельно.

Достоинством этого варианта является его надежность. Выход из строя одной из веток не влияет на работу другой. Светильник будет работать, хотя бы и наполовину мощности.

Главный недостаток – очень громоздкая конструкция.

В остальном, имеет такие же плюсы и минусы, как и все ЭмПРА.

Включение двух ламп от одного дросселя

Дроссель является самой дорогостоящей деталью люминесцентного светильника. В целях экономии, иногда используется схема подключения двух ламп от одного дросселя.

Две лампы от одного дросселя можно запитать двумя способами:

Последовательное соединение двух ламп

Копируется схема стандартного подключения с использованием электромагнитного балласта.

Вторая лампа со своим стартером подключается последовательно первой. Светильник получается дешевле. Но, возникает несколько конструктивных и эксплуатационных проблем.

  • Мощность дросселя должна соответствовать суммарной мощности ламп.
  • Стартеры должны быть однотипными, рассчитанными на пониженное напряжение.
  • При выходе из строя одной из ламп или стартеров не будет работать весь светильник.
  • Усложняется поиск неисправности.

Конструктивные проблемы решаются просто. Необходимо только подобрать из имеющихся в наличии или приобрести подходящие по характеристикам комплектующие.

Кроме удешевления конструкции, последовательное соединение имеет те же достоинства и недостатки, что и классическое ЭмПРА подключение.

Параллельное соединение

Такую схему собрать несложно. Вторая лампа подключается параллельно и имеет отдельный стартер. К одной из ламп, при таком соединении, целесообразно подсоединить фазосдвигающий конденсатор. Это позволит нивелировать один из недостатков схем ЭмПРА – мерцание. Конденсатор сдвинет фазу одной лампы, сгладит общий световой поток и сделает его приятнее для зрения.

К плюсам электромагнитных схем, параллельное соединение добавляет еще два:

  1. Экономия средств на одном дросселе.
  2. Сглаженный световой поток.

Электронный балласт

Электронный запуск и поддержание горения люминесцентных ламп разработали еще в восьмидесятые и начали применять в начале девяностых годов ХХ века. Использование электронного балласта позволило сделать люминесцентное освещение на 20% экономичнее.

Читать еще:  Схема подключения узо в однофазной

При этом сохранились и улучшились все характеристики светового потока. Равномерное, без характерного мерцания освещение стабильно даже при колебаниях напряжения в сети.

Этого удалось достичь благодаря повышенной частоте тока, подаваемого на лампы и большим коэффициентом полезного действия электронных устройств.

Плавный запуск и мягкий рабочий режим позволили почти вдвое увеличить срок эксплуатации ламп. Дополнительно появилась возможность плавного управления яркостью светильника. Необходимость использования стартеров исчезла. С ними пропали и радиопомехи.

Принцип работы электронного балласта отличается от электромагнитного. При этом, выполняет те же функции: разогрев газа, розжиг и поддержание горения. Но, делает это точнее и мягче. В различных схемах используются полупроводники, конденсаторы, сопротивления и трансформатор.

Электронные балласты могут иметь разные схематические исполнения в зависимости от применяемых компонентов. Упрощенно, прохождение тока по схеме можно описать следующим алгоритмом:

  1. Напряжение поступает на выпрямитель.
  2. Выпрямленный ток обрабатывается электронным преобразователем, посредством микросхемы или автогенератора.
  3. Далее напряжение регулируется тиристорными ключами.
  4. Впоследствии один канал фильтруется дросселем, другой конденсатором.
  5. И по двум проводам напряжение поступает на пару контактов лампы.
  6. Другая пара контактов лампы замкнута через конденсатор.

Выгодным отличием электронных систем является то, что напряжение, поступающее на контакты ламп имеет большую, чем у электромагнитных, частоту. Она варьируется от 25 до 140 кГц. Именно поэтому в системах ЭПРА мерцание светильников сведено к минимуму и их свет менее утомителен для человеческих глаз.

Схемы подключения ламп к ЭПРА и их мощность, большинство производителей указывают на верхней стороне устройства. Поэтому потребители имеют наглядный пример, как правильно собрать и подключить прибор в сеть.

В электронных балластах предусмотрено различное количество подключаемых ламп разной мощности, например:

  • К дросселям Philips серии HF-P можно подключить от 1 до 4 трубок, мощностью от 14 до 40 Вт.
  • Дроссели Helvar серии EL предусмотрены для одной – четырех ламп, мощностью от 14 до 58 Вт.
  • QUICKTRONIC торговой марки Osram типа QTР5 также имеют возможность управлять одной – четырьмя лампами, мощностью 14 – 58 Вт.

Электронные приборы имеют массу достоинств, из которых можно выделить следующие:

  • небольшой вес и малую величину устройства;
  • быстрое и сберегающее люминесцентную лампу, плавное включение;
  • отсутствует видимое глазу мерцание света;
  • большой коэффициент мощности, примерно 0,95;
  • прибор не греется;
  • экономия электроэнергии в размере 20%;
  • высокий уровень пожарной безопасности и отсутствие рисков в процессе работы;
  • большой срок службы люминесцентов;
  • отсутствие высоких требований к температуре окружающей среды;
  • способность автоматической подстройки к параметрам колбы;
  • отсутствие шумов во время работы;
  • возможность плавной регулировки светового потока.

Отмечаемый многими, единственный минус электронных систем это их цена. Но она оправдывается достоинствами.

Использование умножителей напряжения

Умножители напряжения для запуска люминесцентных ламп не получили широкого распространения. Такие схемы применяют любители, собирая их кустарным способом.

Они просты, дешевы и достаточно стабильны. Состоят из четырех конденсаторов и четырех диодов. Иногда дополняются конденсаторами.

Принцип работы заключается в ступенчатом увеличении величины напряжения на контактах лампы. Высокое напряжение вызывает пробой газовой среды без ее разогрева, и позволяет запустить даже вышедшие из строя лампы.

Но, умножитель напряжения имеет один большой минус.

Учитывая опасность поражения электрическим током, умножители напряжения не используются в промышленных разработках.

Люминесцентные светильники постепенно уступают свои позиции более современным LED приборам освещения. Но пока еще достаточно популярны благодаря своей экономичности, простоте эксплуатации, надежности и приемлемой стоимости. Простота схем подключения, позволяет самостоятельно устанавливать люминесцентные приборы либо выполнять их замену в случае выхода из строя.

3 схемы подключения люминесцентной лампы без дросселя и стартера.

Лампы дневного света несмотря на всю их «живучесть», по сравнению с обычными лампочками накаливания, в один прекрасный момент также выходят из строя и перестают светить.

Конечно, срок их службы не сравнить со светодиодными моделями, но как оказывается, даже при серьезной поломке, все эти ЛБ или ЛД светильники опять можно восстановить без каких либо серьезных капитальных затрат.

В первую очередь вам нужно выяснить, что же именно сгорело:

    сама люминесцентная лампочка
    стартер
    или дроссель

Как это сделать и быстро проверить все эти элементы, читайте в отдельной статье.

Если сгорела сама лампочка и вам надоел такой свет, то вы легко можете перейти на светодиодное освещение, без какой-либо серьезной модернизации светильника. Причем делается это несколькими способами.

Одна из наиболее серьезных проблем – это вышедший из строя дроссель.

Большинство при этом считают такой люминесцентный светильник полностью негодным и выбрасывают его, либо перемещают в кладовку на запчасти для остальных.

Сразу оговоримся, что запустить ЛБ светильник без дросселя, просто выкинув его из схемы и не поставив туда чего-нибудь другого, у вас не получится. В статье пойдет речь об альтернативных вариантах, когда этот самый дроссель можно заменить другим элементом, имеющимся у вас под рукой дома.

Что советуют делать в таких случаях самоделкины и радиолюбители? Они рекомендуют применить, так называемую бездроссельную схему включения люминесцентных ламп.

В ней используется диодный мост, конденсаторы, балластное сопротивление. Несмотря на некоторые преимущества (возможность запуска сгоревших ламп дневного света), все эти схемы для рядового пользователя темный лес. Ему гораздо проще купить новый светильник, чем паять и собирать всю эту конструкцию.

Поэтому сперва рассмотрим другой популярный способ запуска ЛБ или ЛД ламп со сгоревшим дросселем, который будет доступен каждому. Что вам для этого потребуется?

Читать еще:  Схема реверсивного двигателя

Вам понадобится старая сгоревшая энергосберегающая лампочка с обычным цоколем Е27.

Конечно, схему с ее использованием нельзя считать абсолютно бездроссельной, так как на плате энергосберегайки дроссель все таки присутствует. Просто он по габаритам гораздо меньше, так как экономка работает на частотах до нескольких десятков килогерц.

Этот минидроссель ограничивает ток через лампу и дает высоковольтный импульс для зажигания. Фактически это ЭПРА в миниатюрном варианте.

Раньше была большая рекламная компания по замене ламп накаливания на энергосберегающие. Сегодня уже их активно меняют на светодиодные.

Выкидывать в мусорку экономки не рекомендуется, впрочем как и отдельные модели светодиодных.

Поэтому некоторые сознательные и бережливые граждане, которые еще не сдали их в специальные пункты приема, хранят подобные изделия у себя на полках в шкафчиках.

Меняют их не зря. Эти лампочки в рабочем состоянии очень вредны для здоровья, как в плане пульсаций света, так и в отношении излучения опасного ультрафиолета.

Хотя ультрафиолет не всегда бывает вреден. И порой приносит нам много пользы.

При этом не забывайте, что теми же самыми негативными факторами, в равной степени обладают и линейные люминесцентные модели. Именно ими активно пугают любителей выращивать растения под светом фитоламп.

Но вернемся к нашим энергосберегайкам. Чаще всего у них перестает работать светящаяся спиральная трубка (пропадает герметичность, разбивается и т.д.).

При этом схема и внутренний блок питания остаются целыми и невредимыми. Их то и можно использовать в нашем деле.

Сперва разбираете лампочку. Для этого по линии разъема, тонкой плоской отверткой вскрываете и разделяете две половинки.

При разделении ни в коем случае не держитесь за стеклянную трубчатую колбу.

Далее вытаскиваете плату. На ней находите места, к которым подключаются проводки от “нитей накала” колбы. Они обычно идут в виде штырьков.

При разборе запомните, какая пара куда подключена. Эти штырьки могут находиться как с одной стороны платы, так и с разных сторон.

Всего у вас должно быть 4 контакта, куда вам и следует подпаять в дальнейшем провода.

Ну и естественно не забываем про питание 220В. Это те самые жилки, которые идут от цоколя.

Все что нужно сделать далее, это припаять по два проводника к каждому контакту на плате (от бывших нитей накала трубок) и вывести их к боковым штырькам лампы дневного света.

То есть, отдельно два провода справа и два провода слева. После чего, остается только подать напряжение 220В на схему энергосберегайки.

Лампочка дневного света будет прекрасно гореть и нормально работать. Причем для запуска вам даже не нужен стартер. Все подключается напрямую.

Если стартер в схеме присутствует, его придется выкинуть или зашунтировать.

Запускается такой светильник моментально, в отличие от долгих морганий и мерцаний привычных ЛБ и ЛД моделей.

Какие есть недостатки у такой схемы подключения? Во-первых, рабочий ток в энергосберегайках при равной мощности, меньше чем у линейных ламп дневного света. Чем это чревато?

А тем, что выбрав экономку равной или меньшей по мощности с ЛБ, ваша плата будет работать с перегрузкой и в один прекрасный момент бабахнет. Чтобы этого не случилось, мощности плат от экономок в идеале должны быть на 20% больше, чем у ламп дневного света.

То есть, для модели ЛДС на 36Вт, берите плату от лапочки на 40Вт и выше. Ну и так далее, в зависимости от пропорций.

Если вы переделываете светильник с одним дросселем на две лампочки, то учитывайте мощности обеих.

Почему еще нужно брать именно с запасом, а не подбирать мощность КЛЛ равную мощности ламп дневного света? Дело в том, что в безымянных и недорогих лампочках КЛЛ, реальная мощность всегда на порядок меньше заявленной.

Поэтому не удивляйтесь, когда подключив к старому советскому светильнику ЛБ-40, плату от китайской экономки на те же самые 40Вт, вы в итоге получите негативный результат. Это не схема не работает – это качество товаров из поднебесной не соответствует “железобетонным” советским гостам.

Если вы все таки намерены собрать более сложную конструкцию, при помощи которой запускаются даже сгоревшие линейные светильники, то давайте рассмотрим и такие случаи.

Самый простейший вариант – это диодный мост с парой конденсаторов и подключенная последовательно в цепь в качестве балласта, лампочка накаливания. Вот схема такой сборки.

Главное преимущество ее в том, что подобным образом можно запустить светильник не только без дросселя, но и перегоревшую лампу, у которой вообще нет целых спиралей на штырьковых контактах.

Для трубок мощностью 18Вт подойдут следующие компоненты:

    диодный мост GBU408

    конденсатор 2нФ (до 1кв)
    конденсатор 3нФ (до 1кв)
    лампочка накаливания 40Вт

Для трубок в 36Вт или 40Вт емкости конденсаторов следует увеличить. Все элементы соединяются вот таким образом.

После чего схемка подключается к лампе дневного света.

Вот еще одна подобная бездроссельная схема.

Диоды подбираются с обратным напряжением не менее 1kV. Ток будет зависеть от тока светильника (от 0,5А и более).

В данной схеме при сгоревшей лампе двойные штырьки на концах замыкаются между собой.

Подбор компонентов в зависимости от мощности лампы, делайте ориентируясь на табличку ниже.

Если лампочка целая, перемычки все равно устанавливаются. При этом не требуется предварительный разогрев спиралей до 900 градусов, как в исправных моделях.

Электроны необходимые для ионизации, вырываются наружу и при комнатной температуре, даже если спираль и перегорела. Все происходит за счет умноженного напряжения.

{SOURCE}

Ссылка на основную публикацию
Adblock
detector