Подключение амперметра через трансформатор тока схема

Схемы включения электроизмерительных приборов

Классификация электроизмерительных приборов.

Электроизмерительные приборы классифицируют по следующим признакам:

  • 1) роду измеряемой величины (амперметры, вольтметры, омметры, ваттметры и т.д.);
  • 2) принципу действия (магнитоэлектрические, электромагнитные, электродинамические, тепловые, электронные и т.д.);
  • 3) роду тока (приборы постоянного, переменного, постоянного и переменного тока);
  • 4) степени точности (классы: 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0).

На шкале или на лицевой панели прибора указываются назначение, род тока, положение шкалы (горизонтальное, вертикальное, под углом), пробивное напряжение изоляции, класс точности, условия эксплуатации, год выпуска, заводской номер.

Схемы включения амперметра и вольтметра.

На рисунках 4.3 и 4.4 приведены схемы включения вольтметра и амперметра через измерительные трансформаторы напряжения (ТН) и тока (ТТ) соответственно.

Рис. 4.3. Измерительный трансформатор напряжения.

Схема включения вольтметра:

?/,, U2_ первичное и вторичное напряжения ТН; Wv W2 — первичная и вторичная обмотки ТН; V — вольтметр

Рис. 4.4. Измерительный трансформатор тока. Схема включения амперметра:

/р /2 — первичный и вторичный токи ТТ; Wv W2 — первичная и вторичная обмотки ТТ; А — амперметр

Для измерения тока в электрических цепях служат амперметры, миллиамперметры и микроамперметры различных систем. Их включают в цепь последовательно, и через них проходит весь ток, протекающий в цепи (рис. 4.4). Важно, чтобы при различных электрических измерениях амперметр как можно меньше влиял на электрический режим цепи, в которую он включен. Поэтому амперметр должен иметь малое собственное сопротивление по сравнению с сопротивлением цепи.

Присоединять амперметр к источнику тока (питания) без нагрузки нельзя, так как по его обмотке в этом случае пройдет большой ток, и она может перегореть. По той же причине нельзя включать амперметр параллельно нагрузке.

Каждый амперметр рассчитан на определенный максимальный ток, при превышении которого амперметр может перегореть. Если амперметром нужно измерить ток, превышающий допустимый для данного амперметра, то параллельно амперметру присоединяют шунт, т.е. расширяют пределы измерения амперметра.

Шунт представляет собой относительно малое, но точно известное сопротивление. Схема включения амперметра с шунтом показана на рис. 4.5, а.

Шунт должен иметь четыре зажима для устранения влияния на сопротивление шунта переходных сопротивлений контактов. Шунты изготовляют из манганина — сплава, у которого температурный коэффициент сопротивления практически равен нулю.

Рис. 4.5. Схема включения амперметра:

а — с шунтом; 6 — через трансформатор тока; для схемы а: 1 — шунт; 2 — нагрузка;

для схемы б: 1 — измерительный трансформатор тока; 2 — нагрузка

Рис. 4.6. Схема соединения трех амперметров через два трансформатора тока:

Л j и Л2 — начало и конец первичной обмотки трансформатора тока; И, и И2 — начало и конец вторичной обмотки трансформатора тока; Л — амперметры; iA, iB, ic токи в фазах

Рис. 4.7. Схема включения вольтметра:

R — сопротивление цепи; V— вольтметр

На рисунке 4.6 приведена схема соединения трех амперметров через два трансформатора тока.

Как видно из схемы, через первый амперметр проходит ток iA, через второй — iB, следовательно, ток в третьем амперметре, равный сумме двух линейных токов iA и iB, равен третьему линейному току: ic= iA + iB.

Для измерения напряжения на участке цепи применяют вольтметры. Вольтметр включают параллельно тем точкам цепи (М, N), напряжение между которыми надо измерить (рис. 4.7).

Вольтметр не должен изменять напряжение на измеряемом участке цепи, по этой причине ток, проходящий через вольтметр, должен быть много меньше, чем ток на измеряемом участке.

Для того чтобы вольтметр не вносил заметных искажений в измеряемое напряжение, его сопротивление должно быть большим по сравнению с сопротивлением участка цепи, на котором измеряется напряжение. Любой вольтметр рассчитан на определенное предельное напряжение, но с помощью подключения последовательно с вольтметром добавочного сопротивления /?доб можно измерять большие напряжения (рис. 4.8, б).

Читать еще:  Схема подключения переключателя

Рис. 4.8. Схемы включения амперметра и вольтметра в электрическую цепь:

а — без расширения пределов измерения; б — с расширением пределов измерения;

Яш — сопротивление шунта; /?доб — добавочное сопротивление

На рисунке 4.9 приведена схема включения ваттметра в однофазную цепь высокого напряжения через измерительные трансформаторы тока и напряжения.

Рис. 4.9. Схема включения ваттметра в однофазную цепь высокого напряжения через измерительные трансформаторы тока и напряжения: V— вольтметр; А — амперметр; W— ваттметр

На рисунке 4.10 приведена схема включения амперметров и вольтметров в трехфазную цепь. Как видно из схемы, амперметры включены через измерительные ТТ, а вольтметры —через измерительные ТН. Такие схемы включения измерительных приборов характерны для высоковольтных сетей напряжением 6 (10) кВ и выше.

Рис. 4.10. Включение амперметров и вольтметров в трехфазную цепь с помощью измерительных трансформаторов тока и напряжения

Схемы включения амперметров через трансформаторы тока

В схемах измерения тока как при непосредственном включении приборов, так и при включении их через измерительные трансформаторы тока применяют только амперметры.

Схемы включения амперметров через трансформаторы тока показаны на рис. 1.

Трансформатор тока обеспечивает погрешность измерения, соответствующую его классу точности только при измерении тока в определенном диапазоне, причем сопротивление нагрузки во вторичной обмотке не должно превышать заданного значения. Так, класс точности трансформаторов тока типа ТС-0,5 при сопротивлении нагрузки 1,6 Ом будет 1,0. При увеличении сопротивления нагрузки до 3 Ом класс точности снижается до 3,0, а при включении во вторичную обмотку нагрузки сопротивлением 5 Ом становится равным 10,0.

Сопротивления при составлении реальной схемы могут быть оценены приблизительно следующим образом.

Сопротивление соединительных проводов Rc = ρ l/S ,

где ρ — удельное сопротивление материала провода (для проводов из меди ρ =0,0175 мкОм х м, для проводов из алюминия ρ = 0,028 мкОм х м); l — длина соединительных проводов, м; S — площадь сечения проводов, мм 2 .

Суммарное сопротивление контактных соединений Rк может быть принято равным 0,05 – 0,1 Ом.

Сопротивление прибора Z может быть найдено в справочнике, указано в паспорте прибора или на его шкале.

Рис. 1. Схемы включения амперметров через трансформатор тока: а — простая, б — с промежуточным трансформатором, в — для измерений токов, превышающих номинальный ток трансформатора, г — с промежуточным трансформатором, по с несколькими амперметрами, д – с выключателем амперметра, с — в трехфазной цепи тремя амперметрами, ж — то же с одним амперметром с переключателем.

Наиболее простая и распространенная схема измерения тока с трансформатором в цепи приведена на рис. 1, а.

Ток, измеренный с помощью этой схемы I = (I т n1 х I п х n)/(I т n 2 х N) = ktn х n х D п,

где I т n1 и I т n 2 — номинальные первичный и вторичный токи трансформатора тока; ktn = It1/It2 — коэффициент трансформации; D п = Iп/N – постоянная прибора; D = Dп х k х т n — постоянная измерительной схемы, n – показания прибора в делениях шкалы, N – число делений, нанесенных на шкале прибора, I п – ток полного отклонения стрелки.

Класс точности трансформатора выбирают но классу точности измерительного прибора в соответствии с табл. 1.

Пример. Пусть амперметр РА имеет шкалу с N =150 делениями и предел измерений I п = 2,5А. В измерительной схеме на рис. 1, а он включен через трансформатор тока с номинальными первичным и вторичным токами I т n1 = 600 А и I т n 2 – 5 А соответственно. При измерении тока стрелка измерительного прибора остановилась против деления n = 104.

Читать еще:  Схема соединения звезда

Найдем измеренный ток. Для этого вначале определим постоянную прибора: D п = Iп/N = 2,5/100 = 0,025 А/дел.

Тогда постоянная схемы с измерительным трансформатором и прибором D = (I т n1 / I т n 2) D п = (600 х 0,25)/5 = 3 А/дел.

Измеренный ток находим как результат умножения постоянной схемы на число делений, показываемых стрелкой прибора: I = nD = 104 х 3=312 А.

При дистанционном измерении тока, когда длина соединительных проводов между трансформатором тока и амперметром превышает 10 м, или для одновременного повторения показаний в разных местах во вторичную обмотку трансформатора тока требуется включить нагрузку, сопротивление которой превышает допустимое значение. В этом случае используют схемы, приведенные на рис. 1,б,в, в которых применен промежуточный трансформатор тока с первичным током 5 А и вторичным током 1 или 0,3 А.

В первом случае сопротивление нагрузки вторичной обмотки промежуточного трансформатора может быть увеличено до 30 Ом, а во втором — до 55 Ом. Для определения тока с помощью этой схемы необходимо значение тока умножить на коэффициент трансформации промежуточного трансформатора тока.

Если при проведении испытаний в установках до 1000 В возникает необходимость переключений во вторичной цепи трансформатора тока, то следует применять схему, изображенную на рис. 17, д, в которой используется любой переключатель с двумя полюсами. После замыкания вторичной обмотки трансформатора можно производить необходимые переключения в точках 3 и 4 схемы. Вторичная обмотка при всех переключениях замкнута через контакт выключателя, подключенный к точкам 1 и 2. Переключения в главной цепи трансформаторов тока производят только при снятом напряжении.

Для измерения тока, превышающего номинальный ток одного трансформатора тока, можно применять схему, приведенную на рис. 1, в . Трансформаторы тока T1 N и T 2N включены так, что по первичным обмоткам протекает только половина тока I . Вторичные обмотки этих трансформаторов включены в первичную обмотку промежуточного трансформатора T 3 N, измеряющую сумму вторичных токов трансформаторов T 1 N и T2N, а амперметр — во вторичную обмотку промежуточного трансформатора.

Первичная обмотка промежуточного трансформатора должна быть рассчитана на сумму вторичных токов трансформаторов T 1 N и T2N. Тогда справедливо соотношение I = (kt1n + kt2n) х kt3n х D п х n = Dn, где все обозначения соответствуют приведенным ранее.

Иногда при испытаниях возникает необходимость измерять ток в трехфазных трех и четырехпроводных сетях. В трехпроводных трехфазных цепях без нулевого провода для измерения тока каждой фазы используют измерительные схемы с двумя трансформаторами тока (рис. 1, е).

В этом случае через амперметр РА1 протекает ток Iв фазы В, через амперметр РА2 — ток Iс фазы С, а через амперметр РАЗ — ток Ia = Iв + Iс фазы А. Ток, измеряемый каждым из приборов, находят по выражению I = (I т n1 х I п х n)/(I т n 2 х N) = ktn х n х D п = Dn.

При испытаниях трехфазных электрических машин для измерения тока в фазах чаще используется модификация этой схемы, отличающаяся наличием переключателя S1 (рис. 1,ж). Переключатель позволяет применять только один амперметр и уменьшить погрешность измерения тока в фазах за счет исключения разницы в показаниях приборов в пределах их класса точности. Контакты этого переключателя должны обеспечивать безобрывное переключение вторичных цепей трансформаторов тока.

Подключение амперметра через шунт. Подбор и расчет устройства

Что же такое шунт? Это слово заимствовано из английского языка («shunt», и дословно означает «ответвление»). Физически это сопоставимо, так как через этот элемент, подключенный параллельно к измерительному прибору, проходит большая часть тока, а меньшая – ответвляется в сам прибор. В этом его принцип действия аналогичен байпасу, установленному в системах отопления.

Устройство амперметра

Чтобы осознать необходимость включения амперметра через шунт, напомним вкратце его устройство.

Читать еще:  Схема подключения светильника

Внутри поля постоянного магнита находится катушка – рамка. По ее виткам протекает измеряемый ток. В зависимости от величины измеряемого параметра положение катушки относительно постоянного магнитного поля изменяется. На ее оси жестко закреплена стрелка прибора. Чем больше измеряемый ток, тем больше отклоняется стрелка.

Чтобы рамка могла поворачиваться, ее ось крепят в подпятниках, либо вывешивают на растяжках. При использовании подпятников ток рамки проходит по спиральным пружинам, если же подвижная часть прибора подвешена на растяжках, то они являются проводниками тока.

Из этой конструкции следует, что величина тока в рамке конструктивно ограничена. Пружины и растяжки не могут одновременно быть достаточно упругими и иметь большое сечение.

Подключение амперметра через трансформатор тока

Расширение пределов измерения амперметра возможно, если использовать дополнительно устройство, называемое трансформатор тока. Работает оно по принципу обычного трансформатора, но первичная обмотка содержит всего несколько витков. При прохождении по ней измеряемого тока его величина во вторичной обмотке будет меньше в несколько раз.

Но такие трансформаторы имеют соответствующие габариты и применяются только в промышленных сетях. В малогабаритных же устройствах их использование нецелесообразно.

Подключение амперметра через шунт

Если прибор включается в измерительную цепь напрямую, без трансформатора тока, его называют амперметром прямого включения.

Без шунта можно использовать приборы, рассчитанные на небольшую силу тока, порядка миллиампер. За счет шунтирования измерительной обмотки сопротивлением, большим, чем ее собственное, мы можем изменить предел измерения. Схема включения сложностью не отличается: через шунт проходит измеряемый ток, а параллельно ему подключается амперметр.

В дело здесь вступает первый закон Кирхгофа. Измеряемый ток делится на два: один протекает через рамку, второй – через шунт.

Соотноситься между собой они будут так:

Расчет сопротивления шунта

Отсюда следует, что, зная ток полного отклонения измерительной системы (Iпр) и внутреннее сопротивление рамки (Rпр), можно вычислить требуемое сопротивление шунта (Rш). И тем самым изменить предел измерения амперметра.

Но, перед тем как переделать миллиамперметр в амперметр, нужно решить две непростых задачи: узнать ток полного отклонения измерительной системы и ее сопротивление. Можно найти эти данные, зная тип миллиамперметра, который переделывается. Если это невозможно, придется провести ряд измерений. Сопротивление можно измерить мультиметром. А вот для второго параметра потребуется подать на прибор ток от постороннего источника, измеряя его величину с помощью цифрового амперметра.

Но такой расчет шунта для амперметра не будет точным. Невозможно с помощью подручных средств обеспечить требуемую точность измерений. Система измерения с шунтом имеет большую чувствительность к погрешности при определении исходных данных. Поэтому на практике проводится точная подгонка сопротивления шунта и калибровка амперметра.

Подгонка измерительной системы

Для изготовления заводских изделий используются материалы, не изменяющие своих характеристик в широком диапазоне температур. Поэтому лучший вариант – подбор готового шунта и подгонка для своих целей уменьшением сечения и длины его проводника до соответствия рассчитанному значению. Но для изготовления шунта для амперметра можно использовать и подручные материалы: медную или стальную проволоку, даже скрепки подойдут.

Теперь потребуется блок питания с регулятором напряжения, чтобы выдать требуемый ток. Для нагрузки можно использовать резистор соответствующей мощности или лампы накаливания.

Сначала добиваемся соответствия полного отклонения стрелки прибора при максимальном значении измеряемой величины. На этом этапе подбираем сопротивление нашей самоделки до максимально возможного совпадения с конечной риской на шкале.

Затем проверяем, совпадают ли промежуточные риски с соответствующими им значениями. Если нет – разбираем амперметр и перерисовываем шкалу.

И когда все получилось – устанавливаем готовый прибор на свое место.

{SOURCE}

Ссылка на основную публикацию
Adblock
detector