Защитное зануление это
Защитное зануление в электроустановках
Занулением называется электрическое соединение металлических нетоковедущих частей электроустановок с заземленной нейтралью вторичной обмотки трехфазного понижающего трансформатора или генератора, с заземленным выводом источника однофазного тока, с заземленной средней точкой в сетях постоянного тока.
Принцип действия зануления основан на возникновении короткого замыкания при пробое фазы на нетоковедущую часть часть прибора или устройства, что приводит к срабатыванию системы защиты (автоматического выключателя или перегоранию плавких предохранителей).
Зануление — основная мера защиты при косвенном прикосновении в электроустановках до 1 кВ с глухозаземленной нейтралью. Поскольку нейтраль заземлена, зануление можно рассматривать как специфическую разновидность заземления.
Нулевым защитным проводником называется проводник, соединяющий зануляемые части (корпуса, конструкции, кожухи и т.п.) с заземленной нейтралью источника питания (трансформатора, генератора). Подробнее смотрите здесь: Защитные проводники в электроустановках (PE-проводники).
В сетях 380/220 В в соответствии с требованиями ПУЭ применяется заземление нейтралей (нулевых точек) трансформаторов или генераторов.
Рассмотрим вначале сеть 380 В с заземленной нейтралью. Такая сеть изображена на рис. 1.
Если человек прикоснется к проводнику этой сети, то под воздействием фазного напряжения образуется цепь поражения, которая замыкается через тело человека, обувь, пол, землю, заземление нейтрали (см. стрелки). Та же цепь образуется, если человек прикоснется к корпусу с поврежденной изоляцией. Однако просто выполнить заземление корпуса электроприемника нельзя.
Рис. 1. Прикосновение к проводнику в сети с заземленной нейтралью
Рис. 2. Заземление электроприемника в сети с заземленной нейтралью
Чтобы это понять, допустим, что такое заземление все же выполнено (рис. 2) и на установке произошло замыкание на корпус двигателя. Ток замыкания будет протекать через два заземлителя – электроприемника Rз и нейтрали Rо (см. стрелки).
По закону Ома фазное напряжение сети Uф распределится между заземлителями Rз и Ro пропорционально их величинам, т. е. чем больше сопротивление заземлителя, тем больше будет падение напряжения в нем.
Если, например, сопротивление Rо = 1 ом, Rз = 4 ом и U ф = 220 В, то падение напряжения распределится так: на сопротивлении Rз будем иметь 176 В, а на сопротивлении Rо будем иметь = 44 В.
Таким образом, между корпусом электродвигателя и землей возникает достаточно опасное напряжение. Человек, прикоснувшийся к корпусу, может быть поражен электрическим током. Если будет иметь место обратное соотношение сопротивлений, т. е. Rо будет больше, чем Rз, опасное напряжение может возникнуть между землей и корпусами оборудования, установленного возле трансформатора и имеющими общее заземление с его нейтралью.
Рис. 3 . Зануление электроприемника в сети с заземленной нейтралью
По указанной причине в установках с заземленной нейтралью напряжением 380/220 В применяется система заземления иного вида: все металлические корпуса и конструкции связываются электрически с заземленной нейтралью трансформатора через нулевой провод сети или специальный зануляющий проводник (рис. 3). Благодаря этому любое замыкание на корпус превращается в короткое замыкание, и аварийный участок отключается предохранителем или автоматическим выключателем. Такая система заземления и называется занулением .
Таким образом, обеспечение безопасности при занулении достигается путем отключения участка сети, в котором произошло замыкание на корпус.
Защитное действие зануления заключается в автоматическом отключении участка цепи с поврежденной изоляцией и одновременно – в снижении потенциала корпуса на время от момента замыкания до момента отключения. После прикосновения человека к корпусу не отключившегося, по какой-либо причине, электроприемника в схеме появится ветвь тока через тело человека.
Кроме того, если в этой линии установлено УЗО, то оно так же срабатывает, но не от большой величины силы тока, а потому, что сила тока в фазном проводе становится неравна силе тока в нулевом рабочем проводе, так как большая часть тока имеет место в цепи защитного зануления мимо УЗО. Если на этой линии установлены и УЗО и автоматический выключатель, то сработают либо они оба, либо что-то одно, в зависимости от их быстродействия и величины тока замыкания.
Так же как не всякое заземление обеспечивает безопасность, не всякое зануление пригодно для обеспечения безопасности. Зануление должно быть выполнено так, чтобы ток короткого замыкания в аварийном участке достигал значения, достаточного для расплавления плавкой вставки ближайшего предохранителя или отключения автомата. Для этого сопротивление цепи короткого замыкания должно быть достаточно малым.
Если отключения не произойдет, то ток замыкания будет длительно протекать по цепи и по отношению к земле возникнет напряжение не только на поврежденном корпусе, но и на всех зануленных корпусах (так как они электрически связаны). Это напряжение равно по величине произведению тока замыкания на сопротивление нулевого провода сети или зануляющего проводника и может оказаться значительным по величине и, следовательно, опасным особенно в местах где отсутствует выравнивание потенциалов. Чтобы предупредить подобную опасность, необходимо точно выполнять требования ПУЭ к устройству зануления .
Защитное действие зануления обеспечивается надежным срабатыванием максимальной токовой защиты на быстрое отключение участка сети с поврежденной изоляцией. По ПУЭ время автоматического отключения поврежденной линии для сети 220/380В не должно превышать 0,4 с.
Для этого необходимо, чтобы ток короткого замыкания в цепи фаза – нуль отвечал условию I к > k Iно м , где k — коэффициент надежности , Iном – номинальный ток уставки отключающего аппарата (плавкий предохранитель, автомат ический выключатель ).
Коэффициент надежности k согласно ПУЭ должен быть не менее: 3 – для плавких предохранителей или автоматов с тепловым расцепителем (тепловое реле) для нормальных помещений и 4 – 6 – для взрывоопасных помещений , 1,4 – для автомат ических выключателей с электромагнитным расцепителем во всех помещениях.
Сопротивление растеканию заземляющего устройства нейтрали Ro (рабочее заземление) должно быть не более 2, 4 и 8 Ом соответственно при номинальных напряжениях 660, 380 и 220 В электроустановки трехфазного тока.
Защитное зануление. Работа и устройство. Применение и особенности
Во всем мире используется защита, основанная на соединении нетоковедущих проводящих частей оборудования с землей и заземленной нейтралью источника. В России эта система называется защитное зануление. Защитное действие этой системы основано на принципе достижения нулевого напряжения на корпусе прибора, за счет многократного заземления и соединения нетоковедущих частей с нейтралью источника.
Несмотря на ряд недостатков, зануление продолжает служить основным электрозащитным средством во всем мире. Открытые части установки соединяют отдельным нулевым защитным проводником.
Зануление – соединение металлических частей электрооборудования с нулевым защитным проводом. Зануление служит мерой защиты от случайного попадания под напряжение.
Защитное зануление рассчитано на случай короткого замыкания. Распределение нагрузки на предприятии осуществляется равномерно, нулевой провод исполняет функции защиты. Ноль соединяется с корпусом электродвигателя. Когда происходит короткое замыкание, то возникает напряжение на корпусе электродвигателя.
При этом происходит срабатывание автоматического выключателя. При применении заземляющей шины промышленные электроустановки соединяются.
Принцип действия
Замыкание случается при касании подключенного к напряжению фазного провода на корпус прибора, который соединен с нулем. Возникает большая сила тока, срабатывают аппараты защиты, отключающие питание неисправного прибора.
Время срабатывания защиты и отключения неисправной линии по правилам не должно быть более 0,4 секунды. Для зануления можно применить третью неиспользуемую жилу в кабеле для 1-фазной сети питания.
Фаза и ноль должны быть с небольшой величиной сопротивления. Только тогда аппарат защиты отключит напряжение в установленное время. Чтобы было хорошее зануление необходимо обеспечить качественные контакты соединений.
Защитное зануление дает возможность создать быстрое выключение от сети неисправного питания. Вероятность удара током человека практически исчезает. Зануление считается одним из видов заземления.
Порядок зануления
Зануление для защиты в доме начинается с нейтрали, соединенной с заземленной нейтралью трансформатора.
Нейтраль с 3-фазной линией приходит в здание дома в шкаф ввода. Далее, она разветвляется по щиткам на разных этажах. От нее используется рабочий ноль, образующий 1-фазное напряжение. Ноль имеет название рабочего, так как он применяется для работы.
Зануление для защиты создается отдельным нулем в щитке. Ноль соединен с заземленной нейтралью. Нужно знать, что в схеме соединения ноля с нейтралью не должно быть аппаратов коммутации (рубильников, автоматов).
Как известно в цепях трехфазного переменного напряжения обмотка трансформатора может соединяться в треугольник и в звезду. Рассмотрим звезду. Звезда имеет нулевую точку, или нейтраль. Это та точка, в которой сумма всех трех напряжений сети будет равна нулю.
При такой схеме трансформатора могут быть две возможные схемы. Схема с изолированной нейтралью показана на нашем рисунке. Такая схема обычно используется при работе трехфазных систем, а также однофазных систем, но используется именно изолированная нейтраль.
Нейтраль трансформатора соединяется с землей. Эта схема может быть использована не только для работы в трехфазной или однофазной системе, но также для защитного зануления.
Схема состоит из переменного источника напряжения 220 В, его датчика напряжения, нагрузки, сопротивления, которое в нормальном состоянии отключено. Но когда возникает пробой изоляции при выполнении неправильного монтажа, на корпусе появляется напряжение. Измерим напряжение на нагрузке относительно земли. Рассмотрим схему на базе однофазного источника напряжения.
Мы заземляем нулевую точку. Делаем имитацию пробоя изоляции на корпус. На корпусе установилось напряжение, которое будет равно напряжению источника. При таком состоянии если прикоснуться к корпусу, то человека ударит током. Как избежать этой ситуации? Все очень просто. Используют схему защитного зануления, а именно, корпус соединяют с глухозаземленной нейтралью трансформатора. Напряжение на корпусе становится равным нулю.
Почему опасно защитное зануление в квартире
Его используют для защиты людей и животных от поражения электрическим током, а также для срабатывания защитной аппаратуры в случае возникновения утечки тока на землю. Возникает вопрос: если мы используем глухозаземленную нейтраль, то можно соединить точку защитного заземления с нейтралью?
Этого делать нельзя. По правилам это запрещено. Если при выполнении монтажных работ будут перепутаны местами фаза и ноль, а мы поставим перемычку для соединения заземления с нейтралью, получим следующую неприятную ситуацию. При подключении устройства к сети, корпус оказывается под напряжением относительно земли. Как гласит ПУЭ использование нулевого рабочего проводника в качестве защитного зануления категорически запрещено.
Для защитного зануления отводится специальная шина, которая будет соединена с заземляющим устройством или с глухозаземленной нейтралью. Все заземляющие провода подключаются к этой шине параллельно. Поэтому, не нужно ставить перемычки. А перед тем, как реализовывать защитное заземление или зануление нужно ознакомиться с правилами.
Некоторые специалисты делают заземление приборов перемычкой клеммы ноля в розетке на контакт защиты. Такой способ запрещен .
На входе в квартиру устанавливают аппарат, служащий для подключения питания сети. Это может быть пакетный выключатель или автомат. Опасность самодельного заземления с помощью перемычки в том, что корпус устройства, подключенного к этой розетке, в случае повреждения изоляции нуля станет доступным напряжению фазы. А если оборвется провод нуля, то работа прибора прекратится. Возникнет ложная видимость провода, как обесточенного. Это опасно для жизни .
Такая розетка сделает много неприятностей, если в нее запитать стиральную машину. Если отгорит ноль, то стиральная машина может убить человека в случае прикосновения к ней.
Если человек принимает душ из электрического водонагревателя, а в это время нулевой провод в розетке отсоединится, то человека ударит током. Такое зануление очень опасно выполнять в квартире.
Применение зануления
Применяется в электроустановках до 1 кВ в:
- Сетях постоянного тока со средней точкой заземления.
- 1-фазных сетях с заземленным выводом.
- 3-фазных сетях с заземленным нулем.
Защитное зануление служит для защиты от удара током. Если внутри электроприбора повредилась изоляция и корпус прибора оказался под током, то отреагирует защита и отключит сеть питания.
Образование тока КЗ возникает, если произошло замыкание нулевого и фазного провода на зануленный корпус. Для скорейшего отключения устройства применяют автоматы, предохранители, магнитные пускатели с защитой от перегрева, контакторы с реле.
Защитное зануление это
Принцип работы зануления: если напряжение (фаза) попадает на соединённый с нулем металлический корпус прибора, происходит короткое замыкание. Сила тока в цепи при этом увеличивается до очень больших величин, что вызывает быстрое срабатывание аппаратов защиты (автоматические выключатели, плавкие предохранители), которые отключают линию, питающую неисправный прибор. В любом случае, ПУЭ регламентируют время автоматического отключения поврежденной линии. Для номинального фазного напряжения сети 380/220 В оно не должно превышать 0,4 с.
Зануление осуществляется специально предназначенными для этого проводниками. При однофазной проводке — это, например, третья жила провода или кабеля.
Для того, чтобы отключение аппарата защиты произошло в предусмотренное правилами время, сопротивление петли «фаза-ноль» должно быть небольшим, что, в свою очередь, накладывает на все соединения и монтаж сети жесткие требования качества, иначе зануление может оказаться неэффективным.
Помимо быстрого отключения неисправной линии от электроснабжения, благодаря тому, что нейтраль заземлена, зануление обеспечивает низкое напряжение прикосновения на корпусе электроприбора. Это исключает вероятность поражения током человека. Поскольку нейтраль заземлена, зануление можно рассматривать как специфическую разновидность заземления.
Различают зануление систем TN-C, TN-C-S и TN-S.
Система зануления TN-C
Простая система зануления, в которой нулевой проводник N и нулевой защитный PE совмещены на всей своей длине. Совместный проводник обозначается аббревиатурой PEN. Имеет существенные недостатки, главный из которых — высокие требования к системам уравнивания потенциалов и сечению PEN-проводника. Применяется для электроснабжения трехфазных нагрузок, например асинхронных двигателей. Применение данной системы в однофазных групповых и распределительных сетях запрещено:
Система зануления TN-C-S
Усовершенствованная система зануления, предназначенная для обеспечения электробезопасности однофазных сетей электроустановок. Она состоит из совмещённого PEN-проводника, который соединён с глухозаземленной нейтралью питающего электроустановку трансформатора. В точке, где трёхфазная линия разветвляется на однофазные потребители (например в этажном щите многоквартирного дома или в подвале такого дома) PEN-проводник разделяется на PE- и N-проводники, непосредственно подходящие к однофазным потребителям.
Система зануления TN-S
Наиболее совершенная, дорогая и безопасная система зануления, получившая распространение, в частности, в Великобритании [2] . В этой системе нулевой защитный и нулевой проводники разделены на всей своей длине, что исключает вероятность ее выхода из строя при аварии на линии или ошибке в монтаже электропроводки.
Ошибки в реализации зануления
Иногда ошибочно [источник не указан 1309 дней] считают, что заземление на отдельный контур, не связанный с нулевым проводом сети, лучше, потому что при этом нет сопротивления длинного PEN-проводника от электроустановки потребителя до заземлителя КТП (комплектной трансформаторной подстанции). Такое мнение ошибочно, потому что сопротивление заземления, особенно кустарного, гораздо больше сопротивления даже длинного провода. И при замыкании фазы на заземлённый таким образом корпус электроприбора ток замыкания из-за большого сопротивления местного заземления может оказаться недостаточным для срабатывания АВ (автоматического выключателя) или предохранителя, защищающего эту линию. В таком случае корпус прибора будет находиться под опасным потенциалом. Кроме того, даже если применить АВ небольшого номинала, срабатывающий от тока замыкания на землю, все равно обеспечить требуемое ПУЭ время автоматического отключения поврежденной линии практически невозможно.
Поэтому раньше, до начала массового применения УЗО, заземление корпусов электроприемников без их зануления (то есть заземление по системе ТТ) вообще не допускалось. Пункт 1.7.39 ПУЭ -6:
В электроустановках до 1 кВ с глухозаземлённой нейтралью или глухозаземлённым выводом источника однофазного тока, а также с глухозаземлённой средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприемников без их зануления не допускается.
Питание электроустановок напряжением до 1 кВ от источника с глухозаземлённой нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие: Ra * Iа ≤ 50 В, где Iа — ток срабатывания защитного устройства; Ra — суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников — заземляющего проводника наиболее удалённого электроприемника.
См. также
Примечания
- ↑Правила устройства электроустановок. Архивировано из первоисточника 24 августа 2011.Проверено 19 сентября 2010.
- ↑Earthing
Литература
Вайнштейн Л. И. Меры безопасности при эксплуатации электроустанок потребителей. — М .: Энергия, 1977. — 176 с.
{SOURCE}