Виды заземлений в электроустановках - Всё о электрике

Виды заземлений в электроустановках

Системы заземления электрических сетей до и выше 1000 В

Существует несколько вариантов работы электрических сетей в зависимости от их системы заземления. Кратко охарактеризуем имеющиеся системы заземления электрических сетей класса напряжения до и выше 1000 В.

Сети класса напряжения до 1000 В

В электрической сети данной конфигурации нейтральный вывод питающего силового трансформатора глухо заземлен , то есть электрически соединен с заземляющим контуром на трансформаторной подстанции. На всем протяжении от подстанции к потребителю нулевой и защитный проводник объединены в один общий – так называемый PEN-проводник.

Данная сеть предусматривает «зануление» электроприборов – присоединение нулевого и защитного проводника к совмещенному проводнику PEN. Данная сеть является устаревшей и реализуется только в промышленности и в уличном освещении.

Зануление электроприборов в быту запрещено из-за опасности появления опасного потенциала на зануленных корпусах, поэтому такая сеть в старых постройках эксплуатируется исключительно в качестве двухпроводной – используется только нулевой и фазный проводники.

Данная сеть отличается от предыдущей тем, что совмещенный проводник PEN разделяется в определенной точке, как правило, после входа в здание – на нулевой проводник N и защитный заземляющий проводник PE.

Сеть конфигурации TN-C-S наиболее распространенная в наше время. Данная сеть является одной из рекомендуемых систем согласно ПУЭ и может быть реализована на новых объектах.

Система заземления TN-С:

1 — заземлитель нейтрали (средней точки) источника питания, 2 — открытые проводящие части, N — нулевой рабочий проводник — нулевой рабочий (нейтральный) проводник, PE — защитный проводник — защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов), PEN — совмещенный нулевой защитный и нулевой рабочий проводники — совмещенный нулевой защитный и нулевой рабочий проводники.

Конфигурация данной электрической сети отличается от предыдущих тем, что предусматривает разделение совмещенного проводника еще на питающей подстанции, на всем протяжении линии нулевой и заземляющий проводники разделены.

Данная система применяется при строительстве новых объектов и является наиболее предпочтительной из всех имеющихся. Но в связи с более высокой стоимостью реализации (необходимостью прокладки отдельного защитного проводника), часто все же отдается предпочтение сети конфигурации TN-C-S.

Система заземления TN-S:

Система заземления TN-C-S:

В данном случае нейтраль силового трансформатора также имеет глухое заземление, но электропроводка конечного потребителя заземляется от индивидуального заземляющего контура, не имеющего электрической связи с заземленной нейтралью трансформатора.

Данная система заземления рекомендуется к применению в случае неудовлетворительного состояния электрических сетей, в которых эксплуатация предусмотренного заземления может быть небезопасной.

В основном это сети TN-C, в которых не предусмотрено заземление в принципе, а также сети TN-C-S, которые не удовлетворяют требованиям ПУЭ относительно механической прочности совмещенного проводника, а также наличия его повторных заземлений.

Система заземления TT:

1 — заземлитель нейтрали (средней точки) источника питания, 2 — открытые проводящие части, 3 — заземлитель открытых проводящих частей, N — нулевой рабочий проводник — нулевой рабочий (нейтральный) проводник, PE — защитный проводник — защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов).

Нейтрали силовых трансформаторов в сети данной конфигурации не заземлены, то есть, изолированы от заземляющего контура подстации. Защитный заземляющий проводник может подключаться к заземляющему контуру на подстанции либо непосредственно у потребителя к имеющемуся заземляющему контуру.

Система заземления IT:

1 — сопротивление заземления нейтрали источника питания (если имеется), 2 — заземлитель, 3 — открытые проводящие части, 4 — заземляющее устройство, PE — защитный проводник — защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов).

Данная система заземления применяется для электроснабжения объектов, к которым предъявляются особые требования относительно безопасности и надежности. Это помещения электроустановок электростанций, подстанций, опасных производств, в частности горнодобывающей промышленности, взрывоопасные помещения и др.

Сети класса напряжения выше 1000 В

Электроустановки и сети класса напряжения 6, 10 и 35 кВ работают в большинстве случаев в режиме изолированной нейтрали. В связи с отсутствие заземления нейтрали замыкание одной из фаз на землю не является коротким замыканием и не отключается защитой.

В случае наличия замыкания в сети данной конфигурации допускается ее непродолжительная работа, как правило, на время отыскания поврежденного участка и отделения его от сети. То есть при наличии замыкания в сети изолированной нейтралью потребители не теряют питание, а продолжают работать в прежнем режиме, за исключением поврежденного участка, в котором наблюдается неполнофазный режим – обрыв одной из фаз.

Опасность данной сети заключается в том, что в случае однофазного замыкания происходит растекание токов на землю от точки падения провода на 8 м на открытом пространстве и 4 м в помещениях. Человек, попавший в зону действия растекания данных токов, будет смертельно поражен электрическим током.

Нейтраль сетей 6 и 10 кВ может быть заземлена через специальные компенсирующие реакторы и дугогасящие катушки, которые позволяют компенсировать токи замыкания на землю. Данная система заземления сетей применяется в случае наличия больших токов замыкания на землю, которые могут быть опасны для электрооборудования данных сетей. Такая система заземления электрических сетей называется резонансной либо компенсированной .

Электрические сети класса напряжения 110 и 150кВ имеют эффективную систему заземления. При данной системе заземления большинство силовых трансформаторов электрической сети имеет глухое заземление нейтрали , а некоторые трансформаторы имеют нейтраль, разземленную через разрядники или ограничители перенапряжения . Выборочное разземление нейтралей позволяет снизить токи короткого замыкания в электрических сетях.

Читать еще:  Email Protection

В результате расчетов, выбирается, на каких подстанциях следует разземлить нейтрали трансформаторов, чтобы обеспечить максимально эффективную работу электрической сети. Разземление нейтралей через разрядники или ОПН выполняется для того, чтобы защитить обмотку силовых трансформаторов от возможных перенапряжений.

Сети класса напряжения 220- 750 кВ работают в режиме глухозаземленной нейтрали, то есть в таких сетях все выводы нейтральных обмоток силовых трансформаторов и автотрансформаторов имеют электрическое соединение с заземляющим контуром подстанций.

Какие виды систем заземления существуют и что такое защитное заземление?

Защитное заземление – это система, созданная для предупреждения воздействия электрического тока на человека, путём преднамеренного соединения с землёй корпуса и нетоковедущих частей оборудования, которые могут оказаться под напряжением. Системы заземления могут быть естественными и искусственными.

Что такое заземление и зачем оно нужно?

Заземляющие устройства представляют собой преднамеренное соединение проводниками электрического типа различных точек электросети.

Назначение заземления заключается в предотвращении воздействия электрического тока на человека. Ещё одно назначение защитного заземления – отведение напряжения с корпуса электроустановки через устройство заземления на землю.

Основная цель применения заземления – снижение уровня потенциала между точкой, которая заземляется и землёй. Тем самым понижается сила тока до наименьшего уровня и уменьшается количество поражающих факторов при соприкосновении с деталями электрических приборов и установок, в которых произошел пробой на корпус.

Что такое нейтраль?

Нейтраль – это нулевой защитный проводник, который соединяет между собой нейтрали электроустановок в трехфазных сетях электрического тока. Сфера использования – зануление электроустановок.

Понижающая подстанция, где находится трансформаторная установка, оснащена своим контуром заземления. Этот контур состоит из стальной шины и прутов, закопанных специальным образом в землю. К источникам потребления в электрощиток от подстанции проложен кабель, имеющий 4 жилы. Когда потребителю электроэнергии нужно питание от цепи трехфазного типа, то все 4 жилы должны быть подключены. Когда к жилам подключается разная нагрузка, в системе происходит смещение нейтрали, чтобы предотвратить это смещение, используется нулевой проводник. Он помогает симметрично распределить нагрузку на все фазы.

Что такое PE и PEN проводники?

PEN-проводник – это проводник, совмещающий в себе функции нулевого защитного и нулевого рабочего проводника. Он идет от подстанции и разделяется на PE и N проводники, непосредственно у потребителя.

PE-проводник – это защитное заземление, которое мы используем, например, в квартире в розетке с заземлением. PE-проводник используется для заземления устройств, установок и приборов, где уровень напряжения не превышает 1 кВ.

Данный тип заземления используется только для гарантии безопасности. Такое заземление обеспечивает непрерывное соединение всех открытых и внешних деталей. Механизм обеспечивает стекание тока на землю, которое появилось вследствии попадания электрического тока на корпус какого-либо устройства.

PEN-проводник (объединение нулевого защитного и нулевого рабочего проводника) применяется при использовании системы заземления типа TN-C.

Виды систем искусственного заземления

В классификации систем заземления есть естественные и искусственные типы заземления.

Системы заземления искусственного типа:

Виды заземления – расшифровка названия:

  • T – заземление;
  • N – подсоединение проводника к нейтрали;
  • I -изолирование;
  • C – объединение опций функционального и нулевого провода защитного типа;
  • S – раздельное использование проводов.

Многих людей интересует вопрос о том, что называют рабочим заземлением. По-другому его называют функциональным. Ответ на данный вопрос даёт пункт 1.7.30 ПУЭ. Это заземлерие точек токоведущих частей электрической установки. Применяется для обеспечения функционирования электрических приборов или установок, а не в защитных целях.

Также многих волнует вопрос о том, а что такое защитное заземление. Это процесс заземления устройств с целью обеспечения электробезопасности.

Системы с глухозаземленной нейтралью системы заземления TN

К таким системам относятся:

Согласно п. 1.7.3 ПУЭ TN-система – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.

TN включает в себя такие элементы, как:

  • заземлитель средней точки, которая относится к источнику питания;
  • внешние проводящие части устройства;
  • проводник нейтрального типа;
  • совмещенные проводники.

Нейтраль источника глухо заземлена, а внешние проводники установки подключены к глухозаземленной средней точке источника при помощи проводников защитного типа.

Сделать заземляющий контур можно только в электроустановках, мощность которых не превышает 1 кВ.

Система TN-C

В данной системе нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник. Они совмещены на всем протяжении системы. Полное название – Terre-Neutre-Combine.

Среди преимуществ TN-C можно выделить только легкий монтаж системы, который не требует больших усилий и денежных затрат. Для монтажа не требуется улучшение уже установленных кабельных и воздушных линий электропередачи, у которых есть всего 4 проводящих устройства.

  • возрастает вероятность получения удара током;
  • возможно появление линейного напряжения на корпусе электрической установки во время обрыва электрической цепи;
  • высокая вероятность потери заземляющей цепи в случае повреждения проводящего устройства;
  • такая система защищает только от короткого замыкания.

Система TN-S

Особенность системы заключается в том, что электричество поставляется к потребителям через 5 проводников в трехфазной сети и через 3 проводника в однофазной сети.

Читать еще:  Что такое эпра в светильниках

Всего от сети отходит 5 проводящих источников, 3 из которых выполняют функцию силовой фазы, а оставшиеся 2 – это нейтральные проводники, подсоединенные к нулевой точке.

  1. PN – нейтральный механизм, который задействован в схеме электрического оборудования.
  2. PE – глухозаземленный проводник, выполняющий защитную функцию.
  • легкость монтажа;
  • низкая стоимость покупки и содержания системы;
  • высокая степень электробезопасности;
  • не требуется создание контура;
  • возможность использовать систему в качестве устройства от защиты утечки тока.

Система TN-C-S

TN-C-S система предполагает разделение проводника PEN на PE и N в каком-то участке цепи. Обычно разделение происходит в щитке в доме, а до этого они совмещены.

  • простое устройство защитного механизма от попадания молний;
  • наличие защиты от короткого замыкания.
  • слабый уровень защиты от сгорания нулевого проводника;
  • возможность появления фазного напряжения;
  • высокая стоимость монтажа и содержания;
  • напряжение не может быть отключено автоматикой;
  • отсутствует защита от тока на открытом воздухе.

Система TT

TT разработана для обеспечения высокого уровня безопасности. Устанавливается на электростанциях с низким уровнем технического состояния, например, где используются оголенные провода, электроустановки, которые расположены на открытом воздухе или закреплены на опорах.

TT монтируется по схеме четырех проводников:

  • 3 фазы, подающие напряжение, смещаются под углом 120° между собой;
  • 1 общий ноль выполняет совмещенные функции рабочего и защитного проводника.
  • высокий уровень устойчивости к деформации провода, ведущего к потребителю;
  • защита от КЗ;
  • возможность использования на электроустановках высокого напряжения.
  • сложное устройство защиты от молний;
  • невозможность отследить фазы короткого замыкания электрической цепи.

Системы с изолированной нейтралью

В ходе передачи и распределения электрического тока на потребителей применяется трехфазная система. Это дает возможность обеспечить симметричность и равномерное распределение нагрузки по току.

Такое устройство создает режим, предусматривающий использование трансформаторной будки и генераторов. Их нейтральные точки не оснащены контуром заземления.

Изолированный тип нейтрали применяется в схеме питания при соединении вторичных обмоток трансформаторных установок по схеме треугольника и при отсутствии питания во время аварийный ситуаций. Такая сеть представляет собой замещающую цепь.

Изолированная нейтраль способствует пробиванию изоляционного покрытия при коротком замыкании и возникновению короткого замыкания на других фазах.

Система IT

Система IT с напряжением до 1000 В обеспечивает заземление через высокий уровень сопротивления и оснащена нейтралью источника питания.

Все внешние элементы электроустановки, которые выполнены из материалов, проводящих ток, заземляются. Среди преимуществ можно выделить невысокие показатели утечки тока во время однофазного КЗ электрической сети. Установка с таким механизмом может функционировать долгое время даже при аварийных ситуациях. Между потенциалами отсутствует разность.

Недостаток: защита от тока не срабатывает при замыкании на землю. Во время работы в режиме однофазного КЗ возрастает вероятность поражения током при прикосновении ко второй фазе установки.

Виды и правила заземления электроустановок

Работа с электроприборами, не подключенными к заземляющему контуру или заземленными с нарушением правил электробезопасности, может стать причиной несчастных случаев на производстве. Также это приводит к выходу из строя как самих электроустановок, так и сопутствующего защитного и измерительного оборудования. Правильно подключенное защитное заземление электроустановок обеспечит их защиту в случае выхода из строя изоляции токоведущих частей.

Общие сведения

Заземлением называется мероприятие по созданию контакта между корпусом электроустановки и землей, с целью защиты обслуживающего персонала и электроустановок. В случае правильного подключения системы заземления электроустановок, при пробое изоляции, большая часть тока уйдет по заземляющему контуру, который имеет меньшее сопротивление, чем другие элементы цепи.

Согласно правилам безопасности, электроустановки и другие приборы, которые подлежат заземлению, можно подключить к естественным заземлителям. В их качестве используют:

  • имеющие непосредственный контакт с землей металлические каркасы помещений;
  • металлическую защитную обмотку кабелей, закопанных в землю;
  • проложенные в земле металлические трубы (за исключением трубопроводов с горючими смесями);
  • железнодорожные рельсы.

Подключение таких конструкций к электроустановкам позволяет снизить затраты на оборудование заземления.

Важность сопротивления

Основным параметром эффективности заземления электроустановок является величина электрического сопротивления.

Согласно нормам ПУЭ (Правил Устройства Электроустановок) сопротивление заземлителя на жилых объектах с напряжением сети 220 и 380 Вольт, должно составлять не более чем 30 Ом.

Сопротивление промышленного оборудования (трансформаторных подстанций, генераторов, сварочного оборудования и других приборов) не более чем 4 Ом.
Чтобы достигнуть заданного в ПУЭ значения сопротивления, необходимо обеспечить заземляющее устройство высокой проводимостью. Для увеличения проводимости заземлителя в электроустановках и уменьшения его сопротивления необходимо выполнить одно из условий.

Во-первых, можно увеличить площадь соприкосновения заземляющего контура с землей. Достигается или увеличением площади металлической рамки заземлителя или помещением в грунт дополнительных стальных прутьев.

Во-вторых, можно повысить проводимость земли в месте установки заземлителя. Сопротивление повышается, если грунт поливать соляным раствором.

Еще один способ заключается в замене кабеля, идущего от корпуса электроприбора к контуру заземлителя, на кабель, имеющий большую токопроводимость.

Защита электроприборов

Для обеспечения необходимой защиты от поражения электрическим током применяются следующие защитные мероприятия:

  • установка защитных ограждений;
  • надежная изоляция всех токоведущих элементов;
  • защитные оболочки;
  • ограничение зоны досягаемости;
  • по возможности, использование малого напряжения.

На случай пробоев и изоляции и утечки напряжения на корпус электрооборудования применяются такие методы защиты, как заземление, выравнивание потенциалов, дополнительная изоляция токоведущих частей оборудования. В некоторых случаях требуется установка изолирующих (непроводящих электричество) помещений.

Читать еще:  Двигатель звезда треугольник

В случаях, когда наряду с заземлением применяются другие меры защиты от поражения электрическим током, они не должны оказывать друг на друга негативного влияния и снижать эффективность защиты оборудования и персонала.

Применение естественных элементов заземления возможно только в том случае, если исключается возможность нанесения им какого-либо ущерба, вследствие протекания по ним электрического тока.

Требования к электробезопасности

Если различные виды электроустановок располагаются на смежной территории, следует использовать одно общее заземляющее устройство, отвечающее всем необходимым параметрам безопасности.

Заземляющее устройство, применяемое для защиты электрического оборудования имеющее одно или разное назначение, в обязательном порядке должно соответствовать правилам безопасности. Каждое требование, предъявляемое к устройству заземления электроустановок, должно соблюдаться.

Для соединения заземляющего контура различного электрического оборудования в одну общую заземляющую сеть, можно применять как естественные, так и искусственные заземляющие устройства.

Пиковое значение напряжения утечки и сопротивление заземляющей сети должно отвечать требованиям электробезопасности и обеспечивать надежную защиту при любых атмосферных явлениях, и в любое время года. При расчете сопротивления заземляющих устройств, следует учитывать параметры всех естественных и искусственных заземлителей.

Все элементы схемы заземления должны быть устойчивы к внешним механическим воздействиям, влиянию высокой температуры и любых атмосферных явлений.

Основные типы

Согласно ПУЭ (Правил Устройства Электроустановок) существуют система заземления ТN (включающая в себя группы TN-C, TN-S, TN-C-S), TT и IT.
Латинские буквы в обозначении имеют следующее значение:

  • Т – источник питания соединен с землей;
  • S – размыкание осуществляется разными проводниками;
  • N – нейтраль;
  • C – размыкаются одним проводником;
  • I – изолированная токоведущая часть.

Зная, что означает каждая буква обозначения, можно определить устройство и принцип работы заземляющего устройства, к которому подключается электрооборудование.

Система ТN

Наиболее часто встречающаяся система защитного заземления. Главной ее особенностью служит наличие заземленной «наглухо» нейтрали питающей сети. Иными словами, нулевой выход питающей сети напрямую соединен с заземляющим контуром.

TN-C – данная система заземления широко применялась при постройке старых жилых помещений, а в наше время не используется при строительстве домов, так как является устаревшей и не отвечает всем стандартам безопасности. Такой вид заземления электроприборов применяется в трехфазных сетях с четырехжильным кабелем и однофазных сетях с кабелями имеющими две жилы. Главным недостатком данного типа, является отсутствие в кабелях защитной жилы заземления.

TN-S – система, часто используется для подключения зданий к электрической сети. Имеет наивысшую степень защиты, среди всех систем заземления. Нулевой и рабочий проводник, в этой системе, прокладываются отдельно друг от друга, при этом защитный проводник соединяется со всеми токоведущими частями зачищаемого оборудования. К недостаткам этого вида заземления модно отнести необходимость прокладки дополнительного кабеля.

TN-C-S – в этой системе, жила защитного проводника соединена с нейтральной рабочий жилой. Согласно правили электробезопасности, для системы TN-C-S требуется установка дополнительного заземления.

Система TT

Эта система широко применяется для обеспечения электробезопасности питающих подстанций и установок, имеющих отдельное заземляющее устройство. Часто используется для защиты отдельно стоящих помещений (гаражи, ларьки, ангары и другие сооружения).

Система IT

Источник питания в данной системе изолирован воздушной прослойкой или соединен элементом с большим сопротивлением, что позволяет существенно снизить ток утечки. Система заземления типа IT наиболее часто применяется в медицинских заведениях и лабораториях, для обеспечения корректной работы высокоточных, чувствительных к скачкам напряжения приборов.

Разница между заземлением и занулением

Заземление и зануление электроустановок – это схожие понятия, но имеющие одно отличие.

При использовании заземлителя защита обеспечивается снижением напряжения в токоведущей части. А при занулении защитное действие заключается в мгновенном отключении подачи напряжения в вышедшем из строя участке сети.

Обязательной является установка заземления во всех электроустановках, где нейтраль заизолирована. В том случае когда электроприбор имеет глухозаземленную нейтраль, а напряжение в рабочей сети до 1000 В, можно обойтись только одним занулением.

Правила расчета

Расчет защитного заземления необходимо производить для того, чтобы правильно определить параметры заземляющего контура, такие как его тип, форма, площадь, размеры, количество заземлителей и расстояние между ними. Все эти параметры, вместе со значением токопроводимости грунта, напрямую влияют на суммарное значение сопротивления системы заземления.

Расчет заземляющего устройства производится в обязательном порядке перед началом монтажа контура.

При расчете защитного заземления, обращают особое внимание на значение удельного сопротивления земли. Для расчетов необходимо принимать то его значение, которое соответствует наиболее неблагоприятным сезонным условиям.

Правила установки переносного вида

Переносное заземление устанавливается при временных работах по обслуживанию или ремонту электрооборудования. Монтаж защитного заземления разрешается осуществлять только после проверки на отсутствие напряжения в цепи.

Защитное заземление, предназначенное для защиты работающего на линии персонала от поражения током в случае ошибочного включения напряжения, в обязательном порядке устанавливается на все отключенные фазы, со всех сторон, с которых может быть подано напряжение.

Монтаж переносного заземления в электроустановках с напряжением более 1000 Вольт разрешается производить персоналу имеющему группу электробезопасности не ниже четвертой, а в установках до 1000 Вольт – не ниже третей.

Запрещается использовать в качестве заземляющих элементов детали, которые не предназначены для этого, также запрещается соединять элементы заземления методом скрутки.

{SOURCE}

Ссылка на основную публикацию
Adblock
detector