Системы заземления электроустановок

Системы заземления TN-C, TN-S, TNC-S, TT, IT

Важнейшей частью проектирования, монтажа и дальнейшей эксплуатации оборудования и электроустановок является правильно выполненная система заземления. В зависимости от используемых заземляющих конструкций, заземление может быть естественным и искусственным. Естественные заземлители представлены всевозможными металлическими предметами, постоянно находящимися в земле. К ним относится арматура, трубы, сваи и прочие конструкции, способные проводить ток.

Но электрическое сопротивление и другие параметры, присущие этим предметам, невозможно точно проконтролировать, и спрогнозировать. Поэтому с таким заземлением нельзя нормально эксплуатировать любое электрооборудование. Нормативными документами предусматривается только искусственное заземление с использованием специальных заземляющих устройств.

Классификация систем заземления

В зависимости от схем электрических сетей и других условий эксплуатации, применяются системы заземления TN-S, TNC-S, TN-C, TT, IT, обозначаемые в соответствии с международной классификацией. Первый символ указывает на параметры заземления источника питания, а второй буквенный символ соответствует параметрам заземления открытых частей электроустановок.

Буквенные обозначения расшифровываются следующим образом:

  • Т (terre – земля) – означает заземление,
  • N (neuter – нейтраль) – соединение с нейтралью источника или зануление,
  • I (isole) соответствует изоляции.

Нулевые проводники в ГОСТе имеют такие обозначения:

  • N – является нулевым рабочим проводом,
  • РЕ – нулевым защитным проводником,
  • PEN – совмещенным нулевым рабочим и защитным проводом заземления.

Система заземления TN-C

Заземление TN относится к системам с глухозаземленной нейтралью. Одной из его разновидностей является заземляющая система TN-C. В ней объединяются функциональный и защитный нулевые проводники. Классический вариант представлен традиционной четырехпроводной схемой, в которой имеется три фазных и один нулевой провод. В качестве основной шины заземления используется глухозаземленная нейтраль, соединяемая со всеми токопроводящими открытыми деталями и металлическими частями, с помощью дополнительных нулевых проводов.

Главным недостатком системы TN-C является потеря защитных качеств при отгорании или обрыве нулевого проводника. Это приводит к появлению напряжения, опасного для жизни, на всех поверхностях корпусов устройств и оборудования, где отсутствует изоляция. В системе TN-C нет защитного заземляющего проводника РЕ, поэтому у всех подключенных розеток заземление также отсутствует. В связи с этим для всего используемого электрооборудования требуется устройство зануления – подключение деталей корпуса к нулевому проводу.

В случае касания фазного провода открытых частей корпуса, произойдет короткое замыкание и срабатывание автоматического предохранителя. Быстрое аварийное отключение устраняет опасность возгорания или поражения людей электрическим током. Категорически запрещается использовать в ванных комнатах дополнительные контуры, уравнивающие потенциалы, в случае эксплуатации заземляющей системы TN-C.

Несмотря на то что схема tn-c является наиболее простой и экономичной, она не используется в новых зданиях. Эта система сохранилась в домах старого жилого фонта и в уличном освещении, где вероятность поражения электрическим током крайне низкая.

Схема заземления TN-S, TN-C-S

Более оптимальной, но дорогостоящей схемой считается заземляющая система TN-S. Для снижения ее стоимости были разработаны практические меры, позволяющие использовать все преимущества данной схемы.

Суть этого способа заключается в том, что при подаче электроэнергии с подстанции, применяется комбинированный нулевой проводник PEN, соединяемый с глухозаземленной нейтралью. На вводе в здание он разделяется на два проводника: нулевой защитный РЕ и нулевой рабочий N.

Система tn-c-s обладает одним существенным недостатком. При отгорании или каком-либо другом повреждении проводника PEN на участке от подстанции до здания, на проводе РЕ и деталях корпуса приборов, связанных с ним, возникает опасное напряжение. Поэтому одним из требований нормативных документов по обеспечению безопасного использования системы TN-S, являются специальные мероприятия по защите провода PEN от повреждений.

Схема заземления TT

В некоторых случаях, когда электроэнергия подается по традиционным воздушным линиям, становится довольно проблематично защитить комбинированный заземляющий проводник PEN при использовании схемы TN-C-S. Поэтому в таких ситуациях применяется система заземления по схеме ТТ. Ее суть заключается в глухом заземлении нейтрали источника питания, а также использовании четырех проводов для передачи трехфазного напряжения. Четвертый проводник используется в качестве функционального нуля N.

Подключение модульно-штыревого заземлителя осуществляется чаще всего со стороны потребителей. Далее он соединяется со всеми защитными проводниками заземления РЕ, связанными с деталями корпусов приборов и оборудования.

Схема TT применяется сравнительно недавно и уже хорошо зарекомендовала себя в частных загородных домах. В городах система ТТ применяется на временных объектах, например, торговых точках. Подобный способ заземления требует использования защитных устройств в виде УЗО и выполнения технических мероприятий по защите от грозы.

Читать еще:  Сопротивление контура заземления

Система заземления IT

Рассмотренные ранее системы с глухозаземленной нейтралью хотя и считаются достаточно надежными, однако обладают существенными недостатками. Значительно безопаснее и совершеннее являются схемы с нейтралью, полностью изолированной от земли. В некоторых случаях для ее заземления применяются приборы и устройства, обладающие значительным сопротивлением.

Подобные схемы используются в системе заземления IT. Они наилучшим образом подходят для медицинских учреждений, сохраняя бесперебойное питание оборудования жизнеобеспечения. Схемы IT хорошо зарекомендовали себя на энергетических и нефтеперерабатывающих предприятиях, других объектах, где имеются сложные высокочувствительные приборы.

Основной деталью системы IT является изолированная нейтраль источника I, а также контур защитного заземления Т, установленный на стороне потребителя. Подача напряжения от источника к потребителю производится с использованием минимального количества проводов. Кроме того, выполняется подключение к заземлителю всех токопроводящих деталей, имеющихся на корпусах оборудования, установленного у потребителя. В системе IT нет нулевого функционального проводника N на участке от источника до потребителя.

Таким образом, все системы заземления TN-C, TN-S, TNC-S, TT, IT обеспечивают надежное и безопасное функционирование приборов и электрооборудования, подключаемых к потребителям. Использование этих схем исключает поражение электротоком людей, пользующихся оборудованием. Каждая система применяется в конкретных условиях, что обязательно учитывается в процессе проектирования и последующего монтажа. За счет этого обеспечивается гарантированная безопасность, сохранение здоровья и жизни людей.

Системы заземления

1. Введение.

Заземление является одним из основных факторов обеспечивающих защиту от поражения электрическим током. В соответствии с главой 1.7 ПУЭ все системы заземления электроустановок можно разделить на две группы:

  • системы с глухозаземленной нейтралью к ним относятся система заземления TN (которая в свою очередь делится на системы TN-C, TN-C-S, TN-S) и система заземления TT
  • системы с изолированной нейтралью к ним относится система заземления IT

Первая буква аббревиатуры указывает на характер заземления источника питания, а вторая — на характер заземления открытых проводящих частей электроприемника:

  • T (от франц. terre — земля) — заземлено;
  • N (от франц. neutre — нейтраль) — соединение с нейтралью источника питания (зануление);
  • I (от франц. isolé — изолированный) — изолировано от заземления.

Так же в статье встречаются следующие аббревиатуры:

  • N — функциональный (рабочий) ноль — нулевой проводник используемый для подключения электроприемника.
  • PE — защитный ноль — защитный проводник предназначенный для заземления корпусов электрооборудования.
  • PEN — проводник совмещающий функции нулевого защитного и нулевого рабочего проводников.

Теперь подробно разберем перечисленные типы систем заземления.

2. Система заземления TN

Система TN — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника питания посредством нулевых защитных проводников (п.1.7.3. ПУЭ).

Как уже было написано выше система TN подразделяется на следующие системы (подсистемы): TN-C, TN-C-S, TN-S.

2.1 Система заземления TN-C

Система TN-C — это система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении. То есть при данной системе применяется общий PEN проводник который используется как для подключения электроприемников так и для зануления их открытых проводящих частей (корпусов).

Система заземления TN-C схема:

Как видно на схеме при данной системе выполняется зануление токопроводящих корпусов электрооборудования, это необходимо для того, что бы при замыкании фазного провода на корпус электроприемника, вследствие его обрыва или повреждения изоляции, произошло короткое замыкание которое, в свою очередь, привело бы к срабатыванию защитной аппаратуры (автоматического выключателя) и отключению напряжения.

Главным недостатком системы TN-C является утеря ее защитных функций в случае отгорания (обрыва) PEN проводника, при этом на зануленном корпусе электрооборудования может возникнуть опасный для жизни электрический потенциал.

Из-за недостаточной степени защиты в настоящее время данная система не применяется, однако она все еще встречается в зданиях старой постройки. При реконструкции старых зданий система заземления TN-C заменяется на систему TN-C-S или TN-S.

2.2 Система заземления TN-C-S

Система TN-C-S — это система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания. Другими словами при данной системе имеется PEN проводник который, в определенной части этой системы, разделяется на нулевой рабочий (N проводник) и нулевой защитный (PE проводник).

Система заземления TN-C-S схема:

Данная система более надежна и обеспечивает более высоки уровень электробезопасности чем система TN-C, кроме того система TN-C-S обеспечивает защиту от обрыва нуля, а ее устройство обходится немногим дороже системы системы TN-C.

Читать еще:  Какие цвета проводов обозначают фазу и ноль

Однако эта система так же имеет существенный недостаток — при повреждении PEN проводника на участке сети между источником питания и зданием на всех корпусах электрооборудования соединенных с PE проводником появится опасный для жизни электрический потенциал.

Для предотвращения такого развития событий при системе TN-C-S выполняется повторное заземление PEN проводника, как показано на схеме.

Благодаря невысокой стоимости устройства системы TN-C-S и ее хорошими защитными характеристиками в настоящее время эта система получила наиболее широкое применение.

Подробную инструкцию по устройству заземления в частном доме по системе TN-C-S вы можете посмотреть здесь.

2.3 Система заземления TN-S

Система TN-S — это система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении.

Система заземления TN-S схема:

Данная система обеспечивает высокий уровень безопасности, т.к. при ней исключена возможность возникновения опасного электрического потенциала на корпусах электрооборудования при повреждении питающей линии.

Однако система TN-S не получила широкого распространения ввиду своего главного недостатка — высокой стоимости, которая обусловлена необходимостью выполнения подключения электроустановок потребителей к источнику питания пятью проводами при трехфазном подключении либо тремя проводами при однофазном подключении, при этом отечественная энергетика ориентирована на четырехпроводные схемы трехфазного электроснабжения, это значит, что при решении выполнить подключение по системе TN-S присоединение к существующим сетям электроснабжения будет невозможно, для такого подключения необходимо будет вести отдельную пятипроводную линию от источника питания (трансформаторной подстанции).

3. Система заземления TT

Система ТТ — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.

Система заземления TT схема:

В соответствии с пунктом 1.7.59. ПУЭ питание электроустановок по системе ТТ, допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Кроме того в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:

где Iа — ток срабатывания защитного устройства; Ra — суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников — заземляющего проводника наиболее удаленного электроприемника.

4. Система заземления IT

Система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены.

Система заземления IT схема:

Система IT применяется, как правило, в электроустановках специального назначения, к которым предъявляются повышенные требования безопасности, например лаборатории, угольные шахты, также может применяться в больницах для аварийного электроснабжения и освещения и т.п

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Системы заземления электрических сетей до и выше 1000 В

Существует несколько вариантов работы электрических сетей в зависимости от их системы заземления. Кратко охарактеризуем имеющиеся системы заземления электрических сетей класса напряжения до и выше 1000 В.

Сети класса напряжения до 1000 В

В электрической сети данной конфигурации нейтральный вывод питающего силового трансформатора глухо заземлен , то есть электрически соединен с заземляющим контуром на трансформаторной подстанции. На всем протяжении от подстанции к потребителю нулевой и защитный проводник объединены в один общий – так называемый PEN-проводник.

Данная сеть предусматривает «зануление» электроприборов – присоединение нулевого и защитного проводника к совмещенному проводнику PEN. Данная сеть является устаревшей и реализуется только в промышленности и в уличном освещении.

Зануление электроприборов в быту запрещено из-за опасности появления опасного потенциала на зануленных корпусах, поэтому такая сеть в старых постройках эксплуатируется исключительно в качестве двухпроводной – используется только нулевой и фазный проводники.

Данная сеть отличается от предыдущей тем, что совмещенный проводник PEN разделяется в определенной точке, как правило, после входа в здание – на нулевой проводник N и защитный заземляющий проводник PE.

Сеть конфигурации TN-C-S наиболее распространенная в наше время. Данная сеть является одной из рекомендуемых систем согласно ПУЭ и может быть реализована на новых объектах.

Система заземления TN-С:

1 — заземлитель нейтрали (средней точки) источника питания, 2 — открытые проводящие части, N — нулевой рабочий проводник — нулевой рабочий (нейтральный) проводник, PE — защитный проводник — защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов), PEN — совмещенный нулевой защитный и нулевой рабочий проводники — совмещенный нулевой защитный и нулевой рабочий проводники.

Читать еще:  Электрика в ванной комнате

Конфигурация данной электрической сети отличается от предыдущих тем, что предусматривает разделение совмещенного проводника еще на питающей подстанции, на всем протяжении линии нулевой и заземляющий проводники разделены.

Данная система применяется при строительстве новых объектов и является наиболее предпочтительной из всех имеющихся. Но в связи с более высокой стоимостью реализации (необходимостью прокладки отдельного защитного проводника), часто все же отдается предпочтение сети конфигурации TN-C-S.

Система заземления TN-S:

Система заземления TN-C-S:

В данном случае нейтраль силового трансформатора также имеет глухое заземление, но электропроводка конечного потребителя заземляется от индивидуального заземляющего контура, не имеющего электрической связи с заземленной нейтралью трансформатора.

Данная система заземления рекомендуется к применению в случае неудовлетворительного состояния электрических сетей, в которых эксплуатация предусмотренного заземления может быть небезопасной.

В основном это сети TN-C, в которых не предусмотрено заземление в принципе, а также сети TN-C-S, которые не удовлетворяют требованиям ПУЭ относительно механической прочности совмещенного проводника, а также наличия его повторных заземлений.

Система заземления TT:

1 — заземлитель нейтрали (средней точки) источника питания, 2 — открытые проводящие части, 3 — заземлитель открытых проводящих частей, N — нулевой рабочий проводник — нулевой рабочий (нейтральный) проводник, PE — защитный проводник — защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов).

Нейтрали силовых трансформаторов в сети данной конфигурации не заземлены, то есть, изолированы от заземляющего контура подстации. Защитный заземляющий проводник может подключаться к заземляющему контуру на подстанции либо непосредственно у потребителя к имеющемуся заземляющему контуру.

Система заземления IT:

1 — сопротивление заземления нейтрали источника питания (если имеется), 2 — заземлитель, 3 — открытые проводящие части, 4 — заземляющее устройство, PE — защитный проводник — защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов).

Данная система заземления применяется для электроснабжения объектов, к которым предъявляются особые требования относительно безопасности и надежности. Это помещения электроустановок электростанций, подстанций, опасных производств, в частности горнодобывающей промышленности, взрывоопасные помещения и др.

Сети класса напряжения выше 1000 В

Электроустановки и сети класса напряжения 6, 10 и 35 кВ работают в большинстве случаев в режиме изолированной нейтрали. В связи с отсутствие заземления нейтрали замыкание одной из фаз на землю не является коротким замыканием и не отключается защитой.

В случае наличия замыкания в сети данной конфигурации допускается ее непродолжительная работа, как правило, на время отыскания поврежденного участка и отделения его от сети. То есть при наличии замыкания в сети изолированной нейтралью потребители не теряют питание, а продолжают работать в прежнем режиме, за исключением поврежденного участка, в котором наблюдается неполнофазный режим – обрыв одной из фаз.

Опасность данной сети заключается в том, что в случае однофазного замыкания происходит растекание токов на землю от точки падения провода на 8 м на открытом пространстве и 4 м в помещениях. Человек, попавший в зону действия растекания данных токов, будет смертельно поражен электрическим током.

Нейтраль сетей 6 и 10 кВ может быть заземлена через специальные компенсирующие реакторы и дугогасящие катушки, которые позволяют компенсировать токи замыкания на землю. Данная система заземления сетей применяется в случае наличия больших токов замыкания на землю, которые могут быть опасны для электрооборудования данных сетей. Такая система заземления электрических сетей называется резонансной либо компенсированной .

Электрические сети класса напряжения 110 и 150кВ имеют эффективную систему заземления. При данной системе заземления большинство силовых трансформаторов электрической сети имеет глухое заземление нейтрали , а некоторые трансформаторы имеют нейтраль, разземленную через разрядники или ограничители перенапряжения . Выборочное разземление нейтралей позволяет снизить токи короткого замыкания в электрических сетях.

В результате расчетов, выбирается, на каких подстанциях следует разземлить нейтрали трансформаторов, чтобы обеспечить максимально эффективную работу электрической сети. Разземление нейтралей через разрядники или ОПН выполняется для того, чтобы защитить обмотку силовых трансформаторов от возможных перенапряжений.

Сети класса напряжения 220- 750 кВ работают в режиме глухозаземленной нейтрали, то есть в таких сетях все выводы нейтральных обмоток силовых трансформаторов и автотрансформаторов имеют электрическое соединение с заземляющим контуром подстанций.

{SOURCE}

Ссылка на основную публикацию
Adblock
detector