Принцип работы мультиметра

Мультиметры. Виды и работа. Применение и измерение

Измерительные приборы с электронной начинкой и ручным управлением, применяемые в электронике и электротехнике для измерения свойств цепи электрического тока называются мультиметры. Приборы могут измерять различные параметры, включая напряжение, ток, сопротивление, емкость, определять полярность выводов, а также цоколевку транзисторов и многие другие параметры.

Устройство

Мультиметры состоят из пластмассового корпуса, в котором располагается электронная начинка, блока питания, экрана, или стрелочной шкалы, регулятора, которым можно выбирать вид и интервал измерений.

Чтобы было удобно измерять параметры цепи, устройство снабжено специальными щупами, которые выполнены в виде заостренных металлических стержней с изолированными ручками. Эти щупы присоединяются к мультиметру штекерами через гибкие проводники.

Классификация и особенности
Все мультиметры, или как их еще называют, тестеры, делятся на два класса:
  • Аналоговые.
  • Цифровые.
Аналоговые мультиметры

Тестеры классического типа, которые используются давно, имеющие стрелочную шкалу показаний, относятся к аналоговому классу приборов. Они уже практически вытеснены цифровыми приборами.

В корпусе имеется встроенный экран с градуированной шкалой и стрелкой. Измерения осуществляются с применением электронных блоков.

Такие приборы не обладают высокой точностью замеров, но достаточно надежны в работе. С помощью них можно измерить параметры при сильных помехах от радиоволн, в отличие от современных цифровых устройств.

Цифровые мультиметры

Цифровые тестеры относятся к приборам высокой точности. Они оснащены электронными компонентами компактных размеров, удобным цифровым жидкокристаллическим дисплеем.

В основе конструкции цифрового прибора имеется контроллер с аналого-цифровым преобразователем. В микросхеме находится блок, который производит анализ напряжения.

С помощью таких устройств можно измерить параметры с наименьшей погрешностью, они удобны в эксплуатации и имеют небольшие размеры. Основным их недостатком является повышенная чувствительность к радиопомехам и другим электромагнитным излучениям.

Классификация по точности

Мультиметры имеют различную точность измерений в зависимости от исполнения прибора. Наиболее простыми являются тестеры с разрядностью 2,5. Это эквивалентно точности измерений 10%. Наиболее применяемыми моделями стали мультитестеры с точностью 1%. Также такие приборы могут иметь более низкую точность. Их стоимость зависит от точности. Чем выше точность измерений, тем прибор дороже.

Сфера применения

Эти универсальные приборы позволяют измерять несколько параметров постоянного и переменного тока: напряжение, ток, сопротивление, в то время как специализированные приборы, такие как омметры, амперметры и вольтметры, могут измерить только один определенный параметр цепи.

Мультиметры широко используются в промышленной сфере, электротехнике, электронике, в инженерных расчетах, при проведении ремонтных и эксплуатационных работ. Вместе с контрольными лампами мультитестеры применяют при отделочных работах, во время монтажа и подключения электрической сети. Использование мультиметров дает возможность обеспечения качественной установки электрооборудования.

Подготовка прибора к работе

Для начала необходимо прочитать инструкцию к прибору и убедиться в том, что он может функционировать в той цепи напряжения, которую вы хотите измерять.

Перед началом измерений прибор нужно подготовить к работе, собрать все элементы, подсоединить к клеммам корпуса гибкие проводники со щупами. Чаще всего при осуществлении многих измерений, например, при контроле внутренних электрических систем здания, примеряется определенный алгоритм подключения мультитестера:

  • Черный нулевой проводник вставляется в гнездо «СОМ».
  • Красный провод (фазный) вставляется в гнездо, расположенное выше черного, для замера напряжения, силы тока (не более 200 мА) и сопротивления.

Необходимо убедиться в том, что у гнезда для красного провода есть маркировка со знаком «V». Красный штекер нельзя вставлять в третье гнездо (оно служит для замера постоянного тока до 10 ампер), при измерении переменного тока бытовой сети, так как это опасно для жизни.

Проверка цепи цифровым мультиметром

Тестирование параметров цепи осуществляется для контроля состояния изоляции проводов, их целостности, качества соединений. Прозвонка цепи производится двумя методами.

Метод замера сопротивления цепи

Установите регулятор в режим замера сопротивлений на любое значение показаний.

Приложите щупы к проводам проверяемой цепи. Если на экране появилась «1», то провода не имеют между собой контакта, то есть, сопротивление между ними наибольшее. Также это может говорить о том, что цепь разорвана, либо о правильности сборки, отсутствии замыканий и неисправности изоляции проводов.

Если же на дисплее отобразилось некоторое значение, то по цепи протекает ток. Это говорит о том, что имеется замыкание проводов, либо свидетельствует о хорошей сборке. В этом случае, чем ниже значение сопротивления на дисплее, тем качественнее сборка.

Порядок прозвона 3-жильного кабеля на наличие замыкания проводов.

Метод измерения проводимости

Установите регулятор в режим проверки цепи (есть не во всех приборах).

Далее проводите измерения по алгоритму, описанному выше.

Определение напряжения и прозвон заземления

Для измерения напряжения и контроля контура заземления, при помощи ручки переключения установите режим для напряжения переменного вида, на значение интервала, превышающего измеряемое напряжение.

1. Определение напряжения

Вставьте наконечники щупов в гнезда розетки сети.

На экране появится величина напряжения. Полярность щупов для подключения не важна, так как при подключении щупов с обратной полярностью на экране также будет отображаться измеряемая величина, только со знаком минуса.

Величина напряжения в сети постоянно изменяется, и чаще всего отличается от 220 вольт, но это не является поломкой или неисправностью.

2. Прозвон заземления

Для проверки заземляющего контура один щуп прикладывают к заземлению, другой к фазе. Показания прибора будут равны или немого выше выше чем при измерении напряжения между нулем и фазой. Если прибор показывает ноль то это значит, заземление в розетке отсутствует.

При прозвонке заземления, часто возникают трудности. Цепь (заземление – фаза и нейтраль – фаза) прозваниваются практически с равными значениями напряжения. Поэтому их трудно отличить. Если самостоятельно не было установки электрической проводки, то скорее всего провод заземления окажется нулевым проводом.

Наиболее сложным является определить контуры заземления в старых домах с отсутствующим заземлением. Если заземление было соединено с нулевым проводом, то возникнут проблемы с измерительными приборами и безопасностью бытовых устройств.

Для предотвращения особых сложностей, перед монтажными работами нужно убедиться, есть ли заземление на входе в здание в распределительном щите, а потом осуществлять соединения по цветовой маркировке проводов.

Читать еще:  Что такое заземлитель

Если нужно выяснить, есть ли заземляющий контур в проводке, то следуйте некоторым советам:
  • Во вновь построенных домах значение напряжения в цепи фаза-заземление больше, чем в цепи фаза-нейтраль.
  • Между нулевым проводом и заземлением возможно появление напряжения, вследствие наличия слабого потенциала на проводе ноля.
Проверка транзисторов

Подобным образом проверяются транзисторы. Инновационные мультитестеры оснащены функцией измерения коэффициента усиления. Это значение обозначают одной из греческих букв, или буквой «h» с дополнительной буквой, например, «э». Это значит, что величина была измерена для полупроводника, подключенного с общим эмиттером. Для измерения усиления транзистора имеется два отдельных гнезда для разных структур полупроводников. Величины полевых типов транзисторов определяют по-другому, более сложному варианту, и не может быть определена таким измерительным прибором.

Измерение емкости

Ножки конденсатора вставляются в специальные гнезда, подается импульс напряжения, делается оценка времени разряда. Разность потенциалов на конденсаторе уменьшается по экспоненциальному закону, по которому дается оценка этого параметра. Этот метод применяется в технике для различных целей.

Измерение температуры

Дополнительной функцией некоторых цифровых устройств является измерение температуры, которое основано на действии термопары. Современная электронная техника может определить температуру по изменению сопротивления термопары. Напряжение также определяется аналого-цифровым преобразователем и выдается на дисплей.

Для измерения температуры контроллер имеет дело с напряжением. На корпусе мультиметра имеется специальное гнездо для подключения проводов термопары.

Чтобы измерить температуру выполняют следующие шаги:
  • Вставляют провода термопары в соответствующее гнездо.
  • Размещают термопару в измеряемую среду.
  • На дисплее выдается величина температуры.
Работа аналогового мультиметра
Этот прибор работает с током, в отличие от цифрового устройства, который в работе использует напряжение. В индуктивной катушке поле витков усиливается и отклоняет стрелку в сторону. Такой прибор служит для:
  • Измерения сопротивлений и емкостей.
  • Измерения напряжения.
  • Определение силы тока.

Показания всех параметров выдается на стрелочный экран с градуированной шкалой. Для переключения интервалов измерения имеется ручка управления. Так же, как и в цифровом приборе, есть специальные гнезда для подключения проводов щупов.

Стрелочные аналоговые мультиметры в настоящее время потеряли свою актуальность из-за популярности цифровых приборов.

Устройство аналогового и цифрового мультиметра

Среди радиолюбителей мультиметр часто называют тестером. Но правильней будет все-таки «мультиметр», так как он имеет дополнительные функции, и помимо напряжения и силы тока измеряет другие показатели в широком диапазоне. У современного прибора устройство довольно сложное, но в принципах работы интересно разобраться, чтобы понимать, как происходят измерения.

Классификация

По представлению измеряемых показателей мультиметры разделяют на аналоговые (стрелочные) и цифровые. В аналоговых тестерах отклонение стрелки на градуированной шкале показывает результат измерения. Цифровые мультиметры информацию отображают в виде цифр на жидкокристаллическом или подобном ему экране.

Принципиальная схема мультиметра со стрелкой выглядит проще, чем у его собрата, поэтому зачастую для цифрового прибора в инструкции предоставляют функциональную или структурную схему.

По конструкции их можно так же разделить на два вида:

Наиболее простые – это стрелочные карманные мультиметры. Они представляют собой микроамперметр с набором высокоточных резисторов большого и малого номинала, а для измерения сопротивления имеют встроенный источник питания.

Стационарные мультиметры работают от сети переменного или постоянного тока.

Как правило, это высокоточные приборы со сложной схемой, используемые в лабораториях и различных сервисных центрах.

Дополнительно они имеют разъемы типа RS232, которые позволяют подключаться к компьютерам и создавать на их базе информационно-измерительные системы. В специализированных промышленных комплексах их используют в виде отдельных блоков совместно с другой аппаратурой.

Кроме измерения основных параметров тока в них закладывают еще другие возможности. Некоторые могут измерять температуру, частоту, скважность, выступать в роли генератора синусоидальных или прямоугольных сигналов.

Устройство мультиметра стационарного типа таково, что в нем используются достоинства аналоговых и цифровых приборов. Например, управляемый микропроцессором жидкокристаллический экран, представляет информацию в удобном для восприятия виде. Кроме цифровых показаний, он выдает изображение шкалы и стрелки в соответствующем сигналу положении, как на аналоговом мультиметре.

Простейшая схема

На рисунке представлена принципиальная схема мультиметра. Это самый простой вариант. Как видим, он имеет три шунтирующих резистора номиналами 0,5 Ом, 4,6 Ом и 46,3 Ом.

В режиме миллиамперметра он обеспечивает, при подключении к соответствующим выводам, измерение силы тока в трех диапазонах: 300 мА, 30 мА и 3 мА. Шунты необходимы для защиты мультиметра и измерения тока в различных диапазонах.

Добавочные резисторы номиналом 950 Ом, 10 кОм и 100 кОм предназначены для измерения напряжения в трех диапазонах: 3 В, 30 В и 300 В. Сопротивление измеряется при подсоединении к контактам Rx измеряемой нагрузки.

Перед замером, при закороченных контактах измерительных щупов, переменным резистором R3 выставляется ноль на шкале измерения сопротивления. Данный тестер предназначен только для измерения постоянного тока.

Для того чтобы он мог измерять переменный ток, в схему необходимо ввести выпрямительные диоды. Это связано с тем, что магнитоэлектрический механизм микроамперметра, в силу своего принципа действия, может измерять только постоянный ток.

Принципиальная схема мультиметра, если он стрелочный, меняется от прибора к прибору незначительно. Могут быть другие номиналы сопротивлений из-за использования различных микроамперметров, но суть не изменится. Поэтому ремонтировать их просто, в отличие от цифровых тестеров.

Структурная схема цифрового прибора

В настоящее время большинство мультиметров, выпускаемые промышленностью, являются цифровыми. Оно и понятно. Благодаря использованию современной элементной базы с большим входным сопротивлением, появилась возможность создавать многоразрядные точные аналогово-цифровые преобразователи электрического сигнала.

Это в свою очередь позволило уменьшить погрешность измерения, а применение цифровой индикации обеспечило легкое считывание информации.

В случае со стрелочными мультиметрами это затруднено, так как при погрешности 0,2% и выше прочитать точное показание будет практически невозможно из-за плотного расположения делений на шкале.

Принципиальная схема мультиметра, основанная на интегральных микросхемах сильно зависит от вида используемых микросхем, поэтому для разбора принципа работы прибора удобнее пользоваться структурной схемой, которая одинакова для всех цифровых тестеров.

Читать еще:  Что такое фаза и ноль

На рисунке изображена структурная схема цифрового мультиметра. На ней видно, как происходят измерения постоянного и переменного токов, а также сопротивлений.

Аттенюатор и операционный усилитель

Аттенюатор – это устройство в схеме, уменьшающее входной сигнал в определенное количество раз для того, чтобы он находился в нормированном диапазоне, например, 0-1 мВ. В зависимости от конкретной реализации диапазон может быть другим.

Операционный усилитель очень чувствительный и имеет большой коэффициент усиления. Он реагирует на единицы микровольт на своем входе, а усиление позволяет выставлять от единицы до нескольких тысяч.

При этом у него огромное входное сопротивление, из-за чего он практически не вносит погрешностей. На его основе можно создать очень точные мультиметры и другие измерительные устройства.

Так вот, при поступлении на вход операционного усилителя напряжения с аттенюатора, он усилит его в конкретное число раз, и также не превысит допустимые пределы.

На вход аналогово-цифрового преобразователя (АЦП) поступит сигнал, не превышающий диапазон преобразования.

Предварительное усиление требовалось, чтобы преобразователь мог произвести его оцифровку и вывести на цифровой индикатор.

Схемы аналогово-цифровых преобразователей весьма разнообразны, и некоторые из них выполнены в виде отдельной микросхемы, что очень удобно при создании компактных мультиметров.

Прецизионный выпрямитель и коммутатор

При измерении переменных токов дополнительно применяется прецизионный выпрямитель. Когда необходимо измерить сопротивление, то оно подключается к преобразователю, представляющего собой эталонный генератор тока с делителями.

Этот ток проходит через измеряемое сопротивление, на нем происходит падение напряжения. Это падение усиливается, оцифровывается и выводится на цифровой индикатор.

При любых измерениях сигналы поступают через коммутатор. Он может быть механическим или электронным. На автономных ручных мультиметрах используется механический переключатель.

Хотя принципиальная схема мультиметра цифрового типа не представлена, проанализировав устройство прибора, можно найти отличия между ним и аналоговым типом.

Стрелочные мультиметры, чтобы произвести измерение какого-либо параметра, преобразуют его в силу тока и затем только измеряют. А цифровые тестеры, используя преимущества операционных усилителей, их огромное внутреннее сопротивление, все входящие сигналы преобразуют в напряжение и потом только проводят измерения.

Основные обозначения

Большинство мультиметров выглядят как небольшие коробочки, в верхней части которых расположена шкала со стрелочным механизмом или жидкокристаллический экран. Обозначения на мультиметре практически одинаковы и не зависят от вида прибораи схемы. Так, ниже экрана располагается переключатель режимов измерения. Вокруг отображаются значки, характеризующие тип и диапазон измеряемой величины:

  • OFF означает что, если переключатель режимов будет установлен напротив него, то прибор выключен;
  • положение переключателя в секторе V означает измерение постоянного напряжения;
  • значения 200m, 2000m, 20, 200, 1000 показывают пять диапазонов измерения от 200 милливольт до 1000 вольт;
  • знак V

информирует об измерении переменного напряжения, цифры 100 и 750 о пределах измеряемого напряжения в вольтах;

  • сектор, охваченный белой линией, с символом A означает измерение постоянного тока;
  • цифры 200µ, 2000µ, 20m, 200m и 10А показывают, в каком диапазоне происходит измерение, от 0 до 200, 2000 микроампер, от 0 до 20, 200 миллиампер или до 10 ампер;
  • сектор с символом Ω и цифрами 200, 2000, 20k, 200k, 2000k означает измерение сопротивления в диапазонах от 0 до 200, 2000 Ом, от 0 до 20, 200 или 2000 кОм;
  • при положении переключателя на знаке hFE мультиметр будет тестировать транзистор, если вставить его выводы в гнезда расположенные ниже на отдельном разъеме;
  • символ диода означает, что в этом положении переключателя осуществляется прозвонка.
  • С правой стороны имеются три гнезда. Верхнее, с цифрой 10А, используется при измерении постоянного тока до 10 ампер. Среднее применяется для измерения во всех остальных случаях. Нижнее гнездо для присоединения нулевого провода, рядом изображен знак заземления, как на схеме. Количество диапазонов и их пределы, типы измеряемых величин могут отличаться, но в основном будут совпадать.

    На устройство и внешний вид влияют также и дополнительные возможности закладываемые производителем. Так, сейчас появились тестеры со встроенными токоизмерительными клещами. Они позволяют измерять ток без разрыва проводника, достаточно обхватить его клещами.

    В комплект поставки, кроме мультиметра, входят щупы и инструкция по эксплуатации. В ней обычно даются принципиальная схема, технические характеристики, правила пользования прибором и требования по техники безопасности.

    Мультиметр: устройство, азы работы с ним

    Основы работы с мультиметром – практическое руководство для начинающего электронщика

    Мультиметр – основной прибор радиолюбителя, большой помощник любого электронщика. Поэтому познакомимся с этим прибором получше и узнаем, как с ним работать.
    В радиолюбительском творчестве часто требуется измерять напряжение, силу тока, сопротивление. Раньше для этого приходилось приобретать или даже конструировать самостоятельно несколько разных приборов: вольтметр, амперметр, омметр. Но сейчас в этом нет никакой необходимости: мультиметр – универсальный прибор, и может использоваться для измерения всех основных параметров простых самодельных конструкций.

    В продаже можно встретить огромный ассортимент различных моделей мультиметров – от простых и недорогих до профессиональных, многофункциональных, имеющих повышенную точность и внушительную цену.

    Здесь рассмотрим работу с самым простым и дешёвым приборчиком, который можно приобрести в радиомагазинах, на радиорынках, в гипермаркетах типа «Леруа Мерлен», «Оби» и т.п. Подобный прибор входит в состав набора юного электронщика NR02.

    Приборы такого класса могут иметь несколько другой дизайн, разные режимы работы, но в целом работа с любым подобным мультиметром будет похожа.
    Надёжность и точность измерения этого прибора, конечно, не потрясают воображение, но как первый прибор юного электронщика этот мультиметр – хороший вариант.
    Если же увлечение электроникой перерастёт в хобби, всегда можно купить более серьёзный прибор: многофункциональный, надёжный, с повышенной точностью.

    Включение-выключение прибора. Замена батареи.

    Включение прибора осуществляется поворотом ручки переключения режимов в любое положение, отличное от «OFF». Для выключения мультиметра надо перевести ручку переключателя режимов в позицию «OFF».

    Некоторые модели имеют функцию автоотключения питания: если прибором не пользуются более 10 минут, он автоматически выключится, что позволяет продлить ресурс батареи. Кстати, о батарее: мультиметр работает от батареи типа «Крона». При эпизодическом использовании прибора ресурса батареи должно хватить не менее чем на год. Если цифры на дисплее потеряют контрастность, или же прибор перестанет включаться вообще, батарею следует заменить. Для этого надо снять заднюю крышку прибора, удалить старую батарею и вставить новую.
    Теперь рассмотрим работу с прибором и самые основные режимы измерения.

    Измерение постоянного напряжения (режим «вольтметр»)

    Измерим напряжение стандартной батареи типа «ААА». Её номинальное напряжение – около 1,5В. Но допустим, что мы не знаем этого.
    Устанавливаем переключатель в положение «1000V» и касаемся щупами выводов батареи. На индикаторе отображается «001». Следовательно, напряжение батареи – около 1В, но в этом режиме оно измерено очень грубо – нам не хватает такой точности.

    Переводим переключатель режимов в положение «20» и повторяем измерение.

    В этом режиме напряжение измеряется с большей точностью, и из показаний на дисплее прибора мы видим, что напряжение батареи – 1,56В.

    Переведём переключатель режимов в положение «2000m», что соответствует максимально измеряемому напряжению 2000 мВ (или 2В). Повторим измерения и получим ещё более точный результат – 1566 мВ или 1,566В. Пожалуй, такая точность даже избыточна.

    А теперь переведём переключатель режимов в положение «200m». Максимальное напряжение, которое можно измерить в этом режиме – 0,2В. Мы же подадим на щупы прибора почти в 8 раз более высокое напряжение – 1,5В. Вообще, делать это не очень корректно – можно испортить прибор. Как правило, встроенная защита мультиметра способна справиться с такими «злоупотреблениями», хотя проверять это часто не рекомендуется.

    Касаемся щупами выводов батареи и видим на дисплее символ «1» – индикатор перегрузки. Это вполне естественно – ведь измеряемое напряжение гораздо выше предельных для этого диапазона 0,2В.

    Итак, запомним главное правило: при измерении неизвестного напряжения обязательно установите переключатель режимов работы на самый высокий поддиапазон (в данном случае – 1000В). Затем, поняв примерную величину измеряемого напряжения, можно перевести переключатель режимов в оптимальное положение.

    Прибор имеет встроенную защиту от перегрузки. Скажем, если подать на щупы прибора, включенного в режим «200m» напряжение величиной 2В, ничего страшного не случится: прибор просто покажет на дисплее символ перегрузки «1». Но если подать на щупы прибора, включенного в этот поддиапазон измерения, напряжение 200 В – он может выйти из строя.
    Кроме того, при измерении напряжений выше 40В не нужно касаться оголённых проводов руками – это может быть опасно для жизни!

    Есть ещё одна тонкость. Во всех предыдущих экспериментах мы соблюдали полярность измерения напряжения: красный щуп прибора подключали к выводу «+» батареи, а чёрный – к выводу «-». Но если перепутать местами щупы – ничего страшного не случится, прибор будет корректно измерять напряжение – это штатный режим работы. Только на дисплее будет отображаться знак «-», указывающий на то, что полярность подключения щупов к источнику напряжения неправильная.

    Измерение сопротивлений (режим «омметр»)

    Подключаем к щупам прибора резистор неизвестного номинала. Ручкой переключателя режимов устанавливаем наиболее оптимальный диапазон измерения – для данного резистора это диапазон «20к». На дисплее отображается измеренное сопротивление – 2,37 кОм.

    Если мы проведём измерение этого же сопротивления в положении ручки переключателя режимов «2000k», то увидим на дисплее показания «002» и сделаем вывод о том, что сопротивление резистора – около 2 кОм. Но такая точность нас совершенно не устраивает – надо выбрать более оптимальный диапазон измерения.

    Если же мы проведём измерение в положении ручки переключателя режимов «2000» (2000 Ом или 2 кОм), то увидим на дисплее символ «1», показывающий, что измеряемое сопротивление выше предела измерений.

    Таким образом, при измерении сопротивления главное – выбрать оптимальный диапазон измерения. Правда, в отличие от измерения напряжения, при работе в режиме «омметр» ошибка в выборе диапазона не может вывести прибор из строя.

    Попробуем определить номинал резистора альтернативным способом – по его цветовому коду. На корпус резистора нанесены цветовые полосы: красная, жёлтая, красная, золотистая. Из справочных таблиц находим, что номинальное сопротивление данного резистора – 2,4 кОм, а точность – 5%. Это значит, что реальное сопротивление резистора может лежать в пределах 2,28… 2,52 кОм, что вполне соответствует величине, полученной в результате наших измерений.

    Измерение силы тока (режим «амперметр»).

    Ток всегда измеряется в разрыве цепи. Например, совершенно недопустимо измерять ток, подключив щупы прибора непосредственно к источнику напряжения (например, батарейке).

    Соберём простейшую цепь из батарейки и резистора. Измерим ток в этой цепи: 0.66 мА. Как и всегда при работе с мультиметром, главное – выбрать правильный диапазон измерения.

    Как и в случае с измерением напряжения, нужно начинать измерение силы тока с самого большого поддиапазона – в данном случае «200m» – 200 мА. (Этот прибор может измерять ток до 10А, для чего нужно переключить красную клемму щупа в самое верхнее гнездо прибора. Но начинающему электронщику работать с такими большими токами, скорее всего, не придётся, поэтому подробно об этом режиме здесь не рассказывается).

    Важно помнить вот о чём: включив прибор на диапазон измерения тока, например, на 2000 мкА (2 мА) и пустив через прибор ток в несколько сотен миллиампер, можно испортить прибор. В некоторых случаях перегорает встроенный в прибор предохранитель, и можно легко отделаться, заменив его. Но часто выходят из строя и другие компоненты прибора, и его ремонт становится трудным и нерациональным.

    Теперь попробуем рассчитать силу тока в этой цепи теоретически. Из предыдущих опытов мы знаем напряжение батареи (1.566В) и сопротивление резистора (2370 Ом). Согласно закону Ома: Ток = Напряжение/Сопротивление = 1.566/2370 = 0.66 мА.

    Всё как в аптеке: закон Ома работает, и наш прибор – тоже.

    Итак, мы познакомились с мультиметром, верным помощником каждого радиолюбителя. Измерение постоянного напряжения, сопротивления и силы тока – это 95% режимов, которые нужны начинающему электронщику.

    Работа с прибором в других режимах (измерение переменного напряжения, частоты, параметров транзисторов и диодов) будет рассмотрена отдельно.

    Понравилась статья? Поделиться с друзьями: