Принцип работы двигателя постоянного тока

Приводы и двигатели постоянного тока

Принцип работы

Двигатели постоянного тока

На статоре находится индукторная обмотка (обмотка возбуждения), на которую подаётся постоянный ток – в результате создаётся постоянное магнитное поле (поле возбуждения). В двигателях с постоянными магнитами поле возбуждения создаётся постоянными магнитами.

В обмотку ротора (якорная обмотка) также подаётся постоянный ток, на который со стороны магнитного поля статора действует сила Ампера – создаётся вращающий момент, который поворачивает ротор на 90 электрических градусов, после чего щёточно-коллекторный узел коммутирует обмотки ротора – вращение продолжается.

По способу возбуждения двигатели постоянного тока делятся на четыре группы:

  • С независимым возбуждением – обмотка возбуждения питается от независимого источника
  • С параллельным возбуждением – обмотка возбуждения включается параллельно источнику питания обмотки якоря
  • С последовательным возбуждением – обмотка возбуждения включена последовательно с обмоткой якоря
  • Со смешанным возбуждением – у двигателя есть две обмотки: параллельная и последовательная.

Пуск двигателя постоянного тока

При прямом пуске ток якоря может на порядок превышать номинальный, поэтому при пуске в цепь якоря вводится пусковое сопротивление пусковой реостат. Для плавного пуска реостат делают ступенчатым – в первый момент включаются все ступени (максимальное сопротивление), по мере разгона двигателя растёт противо-ЭДС, ток якоря уменьшается – ступени выключаются одна за другой.

Регулирование скорости вращения двигателя постоянного тока

  • Скорость ниже номинальной регулируется напряжением на якоре (мощность при этом пропорциональна скорости, момент неизменен)
  • Скорость выше номинальной регулируется током обмотки возбуждения – чем слабее поле возбуждения, тем выше скорость (момент падает при постоянной мощности)

Регулирование питания якоря и обмотки возбуждения осуществляется с помощью тиристорных преобразователей (приводов постоянного тока).

Преимущества и недостатки двигателей постоянного тока

Преимущества:

  • Практически линейные характеристики двигателя:
    • механическая характеристика (зависимость частоты от момента)
    • регулировочная характеристика (зависимость частоты от напряжения якоря)
  • Просто регулировать частоту вращения в широких пределах
  • Большой пусковой момент
  • Компактный размер.

Недостатки:

  • Дополнительные расходы на профилактическое обслуживание коллекторно-щёточных узлов
  • Ограниченный срок службы из-за износа коллектора
  • Дороже асинхронных двигателей.

Как выбрать

Выбор двигателя постоянного тока

  • Высота оси
  • Номинальное напряжение якоря
  • Номинальное напряжение возбуждения
  • Номинальная частота вращения
  • Номинальная мощность
  • Номинальный момент
  • Номинальный ток якоря
  • Мощность возбуждения
  • Максимальная частота вращения при понижении поля (выше этой скорости падает мощность)
  • Предельно допустимая рабочая скорость (выше этой скорости начинается механическое разрушение)
  • КПД
  • Момент инерции
  • Степень защиты IP
  • Степень виброустойчивости (прессы и т.п.)
  • Класс изоляции (для работы от преобразователя не ниже F)
  • Температура окружающей среды (для работы при отрицательных температурах в условиях русской зимы требуется специальное исполнение: смазка, вал из специальной стали и т.п.)
  • Высота установки над уровнем моря (выше 1000 метров падают характеристики)
  • Конструктивное исполнение по способу монтажа электродвигателей
    • Маслоуплотнённый фланец для присоединения редуктора
  • Положение клеммной коробки (справа, сверху и т.д.)
  • Тип принудительного охлаждения:
    • Конвекционное: воздушный фильтр, контроль расхода воздуха, встроенный (направление обдува) или внешний (подключение труб) вентилятор
    • Через теплообменник
  • Классификация методов охлаждения электрических двигателей
  • Окраска
  • Подшипники
    • Качения (радиально-упорные)
    • Усиленные подшипники для повышенных радиальных нагрузок на валу
    • С пополнением смазки
    • Для подключения редуктора
  • Вал двигателя
    • Со шпоночным пазом
  • Датчик скорости
    • Тахогенератор
    • Энкодер
  • Тормоз
  • Контроль износа щёток
    • Окошко для визуального контроля
    • Микропереключатель ограничения остаточной длины щёток
  • Контроль нагрева двигателя
    • Термисторная защита – контроль граничных значений (предупреждение, отключение)
    • Непрерывный контроль температуры при помощи датчика KTY
  • Подогрев остановленного двигателя (против образования конденсата)
  • Уровень шума.

Выбор преобразователя постоянного тока

  • Режим работы:
    • Одноквадрантный (1Q) – нереверсивный
    • Четырёхквадрантный (4Q) – реверсивный.

    Выход:

  • Номинальное постоянное напряжение (якоря двигателя)
  • Номинальный постоянный ток якоря
  • Перегрузочная способность по току
  • Номинальная мощность
  • Мощность потерь (рассеиваемая мощность) при номинальном токе
  • Номинальное постоянное напряжение обмотки возбуждения (напряжение поля)
  • Номинальный постоянный ток обмотки возбуждения (ток поля)
  • Панель оператора (съёмная, хранение параметров, поддержка русского языка)
  • Коммуникационный интерфейс для обмена данными с PLC, HMI (PROFIBUS и др.)
  • Точность регулирования
  • Встроенные ПИД-регуляторы
  • Встроенные функции логического контроллера
  • Сигнальные (дискретные и аналоговые) входы-выходы.
Читать еще:  Система заземления tn c s

Малоизвестные факты о двигателях постоянного тока

Двигатели постоянного тока – это специализированные машины, применяемые для того, чтобы делать из энергии постоянного тока механическую.

Что касается принципа работы данной разновидности электрических двигателей, то он может осуществляться двумя способами:

  • Магнитные поля статора и ротора взаимодействуют между собой.
  • Стержни в количестве двух штук, концы которых замкнуты и рамка подвижного типа, в магнитном поле статора находится ток.

Как устроен двигатель

Если мы посмотрим на простейшие модели для демонстрации, то сможем увидеть лишь один стержень и рамку, по которой проходит ток.

Якорь основная обмотка, ток на него подается с помощью коллектора и щеточного механизма. Структура статора может быть двух типов: постоянные магниты или же обмотки возбуждения. Если используются постоянные магниты, то этот двигатель по мощности будет уступать тому, в котором установлены обмотки возбуждения.

Основные параметры электродвигателя постоянного тока

Направление ЭДС, которую навели, всегда противоположно направлению тока в проводнике. Наведенная ЭДС может последовательно изменяться, это будет зависеть главным образом от перемещения проводников в магнитном поле.

Если сложить сумму ЭДС в каждой из катушек, ты мы получим суммарную ЭДС, она является приложением к внешним выводам двигателя. Но главным параметром данной разновидности электрических двигателей является его постоянная. Ей определяется возможность двигателя преобразовывать электроэнергию в механическую.

Постоянная не будет зависеть от соединения обмоток в электродвигатели только если использоваться будет один материал проводника.

Разновидности двигателей постоянного тока

Рассмотрим разновидности двигателей постоянного тока:

  1. Коллекторный с постоянным магнитом. Индуктор этого двигателя включает в себя постоянный магнит, из которого состоит магнитное поле статора.
  2. Бесколлекторный (бесщеточный). Различие лишь в отсутствии щеток для замены при износе, из-за искрения коммутатора.
  3. Серводвигатель постоянного тока. Это привод, ось которого может перемещаться в заданное положение.

Управление здесь соединено печатной платой, двигателем постоянного тока и потенциометром (датчиком). Редуктор преобразует электричество в механическое действие. В результате скорость, с которой вращается выходной вал, снижается до необходимого значения.

Способы возбуждения электродвигателей постоянного тока

В этой разновидности электрических двигателей применяются специальные обмотки, которые называются «обмотками возбуждения». Они приводят в действие сам механизм двигателя.

Независимое возбуждение

При данном типе подключения обмотка накручивается напрямую к источнику питания, при этом, характеристики двигателя с таким способом возбуждения схожи с характеристиками двигателей на постоянных магнитах.

Параллельное возбуждение

Обмотка возбуждения и ротор соединены с одним и тем же источником тока параллельным способом. В этой схеме ток обмотки возбуждения ниже, чем ток Ротора. Последовательное возбуждение. Обмотка последовательно соединяется с якорем. Скорость работы двигателя зависит от его нагрузки.

Смешанное возбуждение

Данная схема предполагает использование двух обмоток возбуждения, расположенных попарно на каждом полюсе электродвигателя. Обмотки могут быть соединены двумя способами: с суммированием или с вычитанием потоков.

Осуществление переключения и контроля двигателей

Данная разновидность двигателей имеет два режима: они могут быть включёнными, либо отключёнными. Такое переключение делается переключателями, реле, транзисторами или же МОП-транзисторами.

В схеме управления используется биполярный транзистор, он играет ключевую роль в переключении режимов.

Контроль скорости двигателя

Потому как скорость данной разновидности двигателей является пропорциональной напряжению на клеммах, можно использовать транзистор для регулирования напряжения на них. Эти два транзистора подключены как пара для управления током главного ротора.

Регулировка скорости импульса

Скорость вращения данной разновидности электрических двигателей является пропорциональной среднему давлению на второй клемме.

Изменение направления движения двигателя постоянного тока

Есть много преимуществ в управлении скоростью данной разновидности электрических двигателей, но есть один большой недостаток: направление вращения всегда одно и то же. Во многих случаях машина действует по простому принципу, чтобы двигаться вперед и назад. H-мостовая схема двигателя.

Читать еще:  Принцип работы индикаторной отвертки

Базовая конфигурация четырех переключателей, будь то электромеханические реле или транзисторы, аналогична букве Н с двигателем, расположенным на шине посередине.

Особенности эксплуатации

Двигатель оснащен механизмами защиты от перегрузки. Предохранение необходимо сделать с задержкой по времени. Защита должна действовать в отрыве, или сигнально, или вентиляционно, если возможен такой вариант.

Сфера использования

На электростанциях они устанавливаются как генераторы для изготовления оборудования, автомобилей и даже различного рода быттехники. Сегодня в каждом доме есть устройство с мотором переменного тока.

Заключение

Надеемся, что после прочтения этой статьи у вас не осталось вопросов относительно данной разновидности электрических двигателей. Если вы хотите получать больше информации по этой теме, а также по теме асинхронных двигателей и сборки металлоискателей своими руками, подписывайтесь на нашу группу в социальной сети «вконтакте».

Электродвигатели постоянного тока. Устройство и работа. Виды

Электрические двигатели, приводящиеся в движение путем воздействия постоянного тока, применяются значительно реже, по сравнению с двигателями, работающими от переменного тока. В бытовых условиях электродвигатели постоянного тока используются в детских игрушках, с питанием от обычных батареек с постоянным током. На производстве электродвигатели постоянного тока приводят в действие различные агрегаты и оборудование. Питание для них подводится от мощных батарей аккумуляторов.

Устройство и принцип работы

Электродвигатели постоянного тока по конструкции подобны синхронным двигателям переменного тока, с разницей в типе тока. В простых демонстрационных моделях двигателя применяли один магнит и рамку с проходящим по ней током. Такое устройство рассматривалось в качестве простого примера. Современные двигатели являются совершенными сложными устройствами, способными развивать большую мощность.

Главной обмоткой двигателя служит якорь, на который подается питание через коллектор и щеточный механизм. Он совершает вращательное движение в магнитном поле, образованном полюсами статора (корпуса двигателя). Якорь изготавливается из нескольких обмоток, уложенных в его пазах, и закрепленных там специальным эпоксидным составом.

Статор может состоять из обмоток возбуждения или из постоянных магнитов. В маломощных двигателях используют постоянные магниты, а в двигателях с повышенной мощностью статор снабжен обмотками возбуждения. Статор с торцов закрыт крышками со встроенными в них подшипниками, служащими для вращения вала якоря. На одном конце этого вала закреплен охлаждающий вентилятор, который создает напор воздуха и прогоняет его по внутренней части двигателя во время работы.

Принцип действия такого двигателя основывается на законе Ампера. При размещении проволочной рамки в магнитном поле, она будет вращаться. Проходящий по ней ток создает вокруг себя магнитное поле, взаимодействующее с внешним магнитным полем, что приводит к вращению рамки. В современной конструкции мотора роль рамки играет якорь с обмотками. На них подается ток, в результате вокруг якоря создается магнитное поле, которое приводит его во вращательное движение.

Для поочередной подачи тока на обмотки якоря применяются специальные щетки из сплава графита и меди.

Выводы обмоток якоря объединены в один узел, называемый коллектором, выполненным в виде кольца из ламелей, закрепленных на валу якоря. При вращении вала щетки по очереди подают питание на обмотки якоря через ламели коллектора. В результате вал двигателя вращается с равномерной скоростью. Чем больше обмоток имеет якорь, тем равномернее будет работать двигатель.

Щеточный узел является наиболее уязвимым механизмом в конструкции двигателя. Во время работы медно-графитовые щетки притираются к коллектору, повторяя его форму, и с постоянным усилием прижимаются к нему. В процессе эксплуатации щетки изнашиваются, а токопроводящая пыль, являющаяся продуктом этого износа, оседает на деталях двигателя. Эту пыль необходимо периодически удалять. Обычно удаление пыли выполняют воздухом под большим давлением.

Читать еще:  Маркировка люминесцентных ламп

Щетки требуют периодического их перемещения в пазах и продувки воздухом, так как от накопившейся пыли они могут застрять в направляющих пазах. Это приведет к зависанию щеток над коллектором и нарушению работы двигателя. Щетки периодически требуют замены из-за их износа. В месте контакта коллектора со щетками также происходит износ коллектора. Поэтому при износе якорь снимают и на токарном станке протачивают коллектор. После проточки коллектора изоляция, находящаяся между ламелями коллектора стачивается на небольшую глубину, чтобы она не разрушала щетки, так как ее прочность значительно превышает прочность щеток.

Виды

Электродвигатели постоянного тока разделяют по характеру возбуждения:
Независимое возбуждение

При таком характере возбуждения обмотка подключается к внешнему источнику питания. При этом параметры двигателя аналогичны двигателю на постоянных магнитах. Обороты вращения настраиваются сопротивлением обмоток якоря. Скорость регулируют специальным регулировочным реостатом, включенным в цепь обмоток возбуждения. При значительном снижении сопротивления или при обрыве цепи ток якоря повышается до опасных величин.

Электродвигатели с независимым возбуждением запрещается запускать без нагрузки или с небольшой нагрузкой, так как его скорость резко возрастет, и двигатель выйдет из строя.

Параллельное возбуждение

Обмотки возбуждения и ротора соединяются параллельно с одним источником тока. При такой схеме ток обмотки возбуждения значительно ниже тока ротора. Параметры двигателей становятся слишком жесткими, их можно применять для привода вентиляторов и станков.

Регулировка оборотов двигателя обеспечивается реостатом в последовательной цепи с обмотками возбуждения или в цепи ротора.

Последовательное возбуждение

В этом случае возбуждающая обмотка подключается последовательно с якорем, в результате чего по этим обмоткам проходит одинаковый ток. Обороты вращения такого мотора зависят от его нагрузки. Двигатель нельзя запускать на холостом ходу без нагрузки. Однако такой двигатель обладает приличными пусковыми параметрами, поэтому подобная схема используется в работе тяжелого электротранспорта.

Смешанное возбуждение

Такая схема предусматривает применение двух обмоток возбуждения, находящихся парами на каждом полюсе двигателя. Эти обмотки можно соединять двумя способами: с суммированием потоков, либо с их вычитанием. В итоге электродвигатель может обладать такими же характеристиками, как у двигателей с параллельным или последовательным возбуждением.

Чтобы заставить двигатель вращаться в другую сторону, на одной из обмоток изменяют полярность. Для управления скоростью вращения мотора и его запуском используют ступенчатое переключение разных резисторов.

Особенности эксплуатации

Электродвигатели постоянного тока отличаются экологичностью и надежностью. Их главным отличием от двигателей переменного тока является возможность регулировки оборотов вращения в большом диапазоне.

Такие электродвигатели постоянного тока можно также применять в качестве генератора. Изменив направление тока в обмотке возбуждения или в якоре, можно изменять направление вращения двигателя. Регулировка оборотов вала двигателя осуществляется с помощью переменного резистора. В двигателях с последовательной схемой возбуждения это сопротивление расположено в цепи якоря и позволяет уменьшить скорость вращения в 2-3 раза.

Этот вариант подходит для механизмов с длительным временем простоя, так как при работе реостат сильно нагревается. Повышение оборотов создается путем включения в цепь возбуждающей обмотки реостата.

Для моторов с параллельной схемой возбуждения в цепи якоря также применяются реостаты для уменьшения оборотов в два раза. Если в цепь обмотки возбуждения подключить сопротивление, то это позволит повышать обороты до 4 раз.

Применение реостата связано с выделением тепла. Поэтому в современных конструкциях двигателей реостаты заменяют электронными элементами, управляющими скоростью без сильного нагревания.

На коэффициент полезного действия мотора, работающего на постоянном токе, влияет его мощность. Слабые электродвигатели постоянного тока обладают малой эффективностью, и их КПД около 40%, в то время, как электродвигатели мощностью 1 МВт могут обладать коэффициентом полезного действия до 96%.

{SOURCE}

Ссылка на основную публикацию
Adblock
detector