Сопротивление изоляции кабеля
Что такое сопротивление изоляции кабеля и его нормы
Сопротивление изоляции — один из главнейших параметров кабелей и проводов, ведь в ходе эксплуатации силовые и сигнальные кабели всегда подвержены различным внешним воздействиям. Кроме того, помимо внешних воздействий, постоянно присутствует и влияние жил внутри кабеля друг на друга, их электрическое взаимодействие, что непременно приводит к появлению утечек. Добавив сюда факторы, влияющие на качество изоляции, мы получим более цельную картину.
По этим причинам кабели всегда защищаются диэлектрической изоляцией, к которой относятся: резина, пвх, бумага, масло и т. д. – в зависимости от назначения кабеля, от рабочего напряжения, от рода тока и т. д. Так, например, подземные распределительные телефонные линии выполняются бронированным лентой кабелем, а некоторые телекоммуникационные кабели заключают в оболочку из алюминия для защиты от внешних токовых помех.
Что касается диэлектрических свойств изоляции, то не только они влияют на выбор конкретного материала для того или иного кабеля. Не менее важна термостойкость: резина более стойка к высоким температурам, чем пластмасса, пластмасса — лучше чем бумага и т.д.
Так, изоляция кабеля — это защита жил от их влияния друг на друга, от короткого замыкания, от утечек, и от внешних воздействий со стороны окружающей среды. А сопротивление изоляции определяется величиной оного между жилами и между жилой и наружной поверхностью изолирующей оболочки (или между жилой и экраном).
Безусловно материал изоляции в процессе эксплуатации кабеля теряет свои былые качества, стареет, разрушается. И одним из показателей этих неблагоприятных изменений является снижение сопротивления изоляции постоянному току.
Сопротивление изоляции постоянному току для различных кабелей и проводов нормируется согласно их ГОСТ, что указывается в паспорте на конкретную кабельную продукцию: в лабораторных условиях фиксируется нормальное сопротивление изоляции при температуре окружающей среды в +20°C, после чего сопротивление приводится к длине кабеля в 1 км, что и указывается в технической документации.
Так, НЧ-кабели связи имеют минимальное нормируемое сопротивление 5 ГОм/км, а коаксиальные — до 10 ГОм/км. При замерах учитывают, что это приведенная длина для 1 км кабеля, соответственно кусок вдвое длиннее будет иметь вдвое меньшее сопротивление изоляции, а кусок вдвое более короткий — вдове большее. К тому же температура и влажность при замерах оказывают существенное влияние на текущее значение, так что необходимо вводить поправки, специалисты это знают.
Говоря о силовых кабелях, учитывают положения ПУЭ п. 1.8.40. Так, силовым кабелям цепей вторичной коммутации и осветительных электропроводок с напряжением до 1000 В приписывается норма от 0,5 МОм для каждой жилы между фазными проводами и между фазным и нулевым проводом и проводом защитного заземления. А для линий с напряжением от 1000 В и выше — норма сопротивления не указывается, но указывается ток утечки в мА.
Проводятся специальные испытания, при которых нормируется напряжение проверки. В соответствии с родом тока испытательного оборудования и назначением проверяемого кабеля, с учетом материала его изоляцией — выставляют испытательное напряжение на мегаомметре. Так при помощи мегаомметра и оценивают качество изоляции высоковольтных кабелей.
Сопротивление изоляции в 1 МОм на киловольт рабочего напряжения кабеля считается приемлемым, то есть для кабеля, работающего под напряжением в 10 кВ сопротивление в 10 МОм будет принято нормальным по итогу испытаний мегаомметром с проверочным напряжением 2,5 кВ.
Измерения сопротивления изоляции проводят регулярно мегаомметром: на мобильных установках — раз в полгода, на объектах повышенной опасности — раз в год, на остальных объектах — раз в три года. Данными измерениями занимаются квалифицированные специалисты. В результате измерений специалистом составляется документ — акт установленного Ростехнадзором образца.
По итогу проверки делается заключение о том, нуждается ли объект в ремонте или его работоспособность соответствует требованиям проверки. Если требуется ремонт — проводят ремонт с целью восстановления сопротивления изоляции до нормы. Протокол составляется и по итогам ремонта, после очередных замеров мегаомметром.
Нормы сопротивления изоляции кабеля связи
Подписка на рассылку
Измерение величины сопротивления изоляции кабеля связи с металлическими токопроводящими жилами производится с целью определения его работоспособности. От данного показателя в том числе зависит качество передаваемого по проводникам сигнала. Результатом снижения сопротивления изоляции, как правило, становится появление помех на линии, что, в свою очередь, приводит к возникновению звуковых шумов (телефонная линия), снижению пропускной способности (цифровые системы передачи данных) или же полный обрыв сообщения.
Согласно ГОСТ 15125-92 измерение сопротивления изоляции кабеля связи должно осуществляться раз в 6 месяцев.
Нормы сопротивления изоляции кабеля связи
Электрические нормы кабелей связи определяют минимальные значения сопротивления внешней изоляции и изоляции жил, при которых кабельная продукция допускается к использованию. Величина сопротивления зависит от типа и предназначения кабеля.
Требования к значениям сопротивления изоляции вводимых в эксплуатацию кабелей приведены в ГОСТ 15125-92, ОСТ 45.01-98, ОСТ 45.83-96 и прочей нормативно-технической документации. Рассмотрим несколько примеров.
Нормы сопротивления изоляции кабелей связи, наиболее часто применяемых для строительства первичных сетей, ГТС и других линий (значения на 1 км длины кабеля, без оконечных / с оконечными устройствами):
• Кабели с трубчато-бумажной и пористо-бумажной изоляцией (ТГШп, ТБпШп, ТКпШп, ТСтШп и т. п.) — 8000/1000 МОм.
• Полиэтиленовая изоляция (марки — ТППэп, ТППэпБ, ТПВБГ, СТПАПП, СТПАППБГ и другие) — 6500/1000 МОм.
• Кордельно-бумажная изоляция (ТЗБ, ТЗБГ, ТЗКл, ТЗБн и т. п.) — 10000/3000 МОм.
Испытание кабелей связи
Измерение сопротивления изоляции кабеля связи также производятся согласно нормативным требованиям. При выполнении этой задачи важно учитывать текущую температуру и влажность воздуха. Все электрические параметры кабелей связи приводятся производителями при условии проведения испытаний при температуре +20 °С и длине кабельного изделия 1 км. Отклонение этих параметров от нормы приводит к увеличению или уменьшению показаний. Однако существуют простые формулы, позволяющие произвести перерасчет сопротивления в зависимости от температуры и длины.
Оборудование
Измерение сопротивления изоляции кабеля связи производится специальным прибором, называемым мегаомметром. Для определения нужной электрической величины данные устройства генерируют определенное напряжение (от 100 В и более).
На текущий момент используются две разновидности мегаомметров — цифровые и аналоговые. В первом случае для генерации напряжения используются электромеханические (ручные) генераторы и стрелочные индикаторы. Цифровые мегаомметры для генерации напряжения используют, как правило, гальванические элементы или аккумуляторные батареи. Результаты измерений выводятся на цифровое табло. Также некоторые модели мегаомметров не имеют собственного генератора тока и требуют подключения внешнего источника питания.
Для тестирования кабельных линий также широко применяются рефлектомеры, способные определять различные дефекты кабеля локационным (рефлектометрическим) методом. Принцип работы устройств следующий:
• На жилы тестируемого кабеля подаются коротковолновые электрические импульсы.
• При наличии в кабеле каких-либо дефектов, подаваемый импульс отражается от препятствия и возвращается обратно к прибору.
• Возвращенный сигнал улавливается датчиками рефлектомера, измеряется, анализируется, после чего результат измерений отображается на дисплее.
Таким образом, при помощи рефлектомеров можно обнаружить обрывы, короткие замыкания, перепутанные пары, плотную землю и другие дефекты, которые имеют место в том числе при повреждении изоляции кабеля.
Требования и методика испытания кабелей связи
Измерение параметров кабелей связи (изоляции) — процесс несложный, но требует соблюдения установленных нормативной документацией (в частности — ГОСТ 3345-76, ГОСТ 2990-78) требований. Если кратко:
• Перед проведением работ кабель должен быть обесточен и отсоединен от всех оконечных устройств и проводников (если это, например, кабель ГТС, испытываемые жилы отсоединяются от клемм распределительных щитков).
• Нельзя проводить испытания мегаомметром над кабелями, расположенными в непосредственной близости с другими электросистемами, т. к. генерируемое прибором напряжение способно создавать мощные электромагнитные поля, которые могут нарушить работу этих систем.
• Нельзя проводить испытания воздушных линий связи в грозу.
• Испытываемые проводники (жилы) должны быть заземлены.
• Отсоединять испытываемый проводник от «земли» можно только после его подключения к соответствующим клеммам мегаомметра (т. е. сначала подключается прибор, а только затем провода отсоединяются от «земли»).
• Перед выполнением и после проведения измерений проводник должен быть освобожден от остаточного тока путем короткого замыкания. Эта операция также выполняется над измерительными щупами мегаомметра.
• Для получения точного результата ток пропускается по испытываемому проводнику в течение (и не более!) 1 минуты. После проведения испытаний прибору и испытываемому проводнику дают «остыть» в течение 2 и более минут, если в соответствующей документации к мегаомметру и/или кабелю не приведены другие цифры.
• Все прочие требования к безопасности приведены в ГОСТ 2990-78.
Теперь рассмотрим процесс измерения сопротивления изоляции кабеля связи на примере коаксиальной пары без защитного экрана (будем измерять сопротивление изоляции жил). Согласно ГОСТ 2990-78, условная схема приложения напряжения к жилам кабеля выглядит следующим образом:
• Жила «1» подключается к входу «R–» (вход также может быть обозначен, как «–», «Земля» или «З») мегаомметра.
• Жила «1» и вход «R–» мегаомметра заземляются.
• Жила «2» подключается к входу-источнику напряжения «R+» («+», «Rx», «Линия» или «Л») мегаомметра.
Условная рабочая схема:
Процесс проведения измерений:
• Сначала на мегаомметре устанавливают уровень выходного напряжения, который зависит от марки испытуемого кабеля (обычно для проверки кабелей связи достаточно подать напряжение в 500 В).
• После подачи напряжения в цепь мегаомметру потребуется около 1 минуты для проведения измерений. Если это стрелочный прибор, необходимо дождаться ее полной остановки, для этого мегаомметр должен находиться в неподвижном состоянии. В случае с цифровыми приборами делать это необязательно.
• При необходимости измерения проводят несколько раз. Как было сказано выше, перед каждой процедурой прибору дают «остыть» в течение примерно 2 минут (плюс-минус — зависит от характеристик мегаомметра).
На показания сильно влияет температура окружающей среды (чем она выше, тем ниже сопротивление и наоборот). Если ее значение отлично от +20 градусов, необходимо воспользоваться следующей «корректирующей» формулой:
R_(20 )– сопротивление изоляции кабеля (в нашем случае сопротивление изоляции жил) при +20 °С (указывается в паспорте к марке кабеля);
R_1 — сопротивление, полученное в результате измерений при температуре, отличной от +20 °С;
K — «корректирующий» коэффициент, позволяющий определить такое значение сопротивления изоляции, которое бы имело место при +20 °С (коэффициенты приведены в приложении к ГОСТ 3345-76).
Например, возьмем кабель КТПЗБбШп с полиэтиленовой изоляцией, первоначальное сопротивление которой (без оконечных устройств) составляет 5000 МОм. После измерения сопротивления жил при температуре в 15 °С получили результат, допустим, в 11 500 МОм. Согласно ГОСТ 3345-76, поправочный коэффициент «K» в случае с полиэтиленовой изоляцией жил составляет 0,48. Подставив это значение в формулу, имеем:
R_(20 )=0,48*12500=5520 (сопротивление при нормальных условиях)
По следующей формуле можно определить сопротивление изоляции в зависимости от длины кабеля:
R_(20 )– сопротивление изоляции при +20 °С;
l — длина испытываемого кабеля;
Возьмем ту же марку кабеля ТППэпБбШп длиной в 1,5 км. Нам известно первоначальное сопротивление изоляции жил при нормальных условиях — 5000 МОм. Отсюда:
R=6500* 1,5=7500 МОм
Компания «Кабель.РФ ® » является одним из лидеров по продаже кабельной продукции и располагает складами, расположенными практически во всех регионах Российской Федерации. Проконсультировавшись со специалистами компании, вы можете приобрести нужную вам марку кабеля связи по выгодным ценам.
Сопротивление изоляции кабеля.
Приступая к измерению сопротивления изоляции кабеля важно учесть температурные показатели окружающей среды. Почему так?
Это связано с тем, что при минусовой температуре в кабельной массе молекулы воды будут находиться в замерзшем состоянии, фактически в виде льда. А как известно лед является диэлектриком и не проводит ток.
Так что при определении сопротивления изоляции при минусовой температуры именно эти частички замерзшей воды не будут обнаружены.
Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.
Приборы и средства измерения сопротивления изоляции кабеля.
Следующим пунктом при проведении измерения сопротивления изоляции кабельных линий, будут сами измерительные приборы.
Наиболее популярным прибором для измерения сопротивления изоляции у работников нашей электролаборатории является прибор MIC-2500.
С помощью этого прибора произведенного фирмой Sonel можно не только снять замеры показателей сопротивления кабельных линий, шнуров, проводов, электрооборудования (трансформаторы, выключатели, двигатели и т.п), но и определить замер уровня изношенности и уровня увлажненности изоляции.
Стоит отметить, что именно прибор MIC-2500 включен в государственный реестр разрешенных для измерения сопротивления изоляции.
Согласно инструкциям прибор MIC-2500 должен проходить ежегодную государственную поверку. После процедуры поверки на прибор наносят голограмму и штамп, которые подтверждают прохождение поверки. В штампе указывается информация о дате плановой поверки и серийный номер измерительного прибора.
К работе с измерениями сопротивления изоляции допускаются только исправные и поверенные приборы.
Нормы сопротивления изоляции для различных кабелей.
Для определения норма сопротивления изоляции кабелей, нужно провести их классификацию. Кабели по функциональному назначению разделяются на:
- выше 1000 (В) – высоковольтные силовые
- ниже 1000 (В) – низковольтные силовые
- контрольные кабели – (цепи защиты и автоматики, вторичные цепи РУ, цепи управления, цепи питания электроприводов выключателей, отделителей, короткозамыкателей и т.п.)
Измерение сопротивления изоляции, как для высоковольтных кабелей, так и для низковольтных кабелей осуществляется мегаомметром на напряжение 2500 (В). А контрольные кабели измеряются при напряжении 500-2500 (В).
Каждый кабель имеет свои нормы сопротивления изоляции. Согласно ПТЭЭП и ПУЭ.
Высоковольтные силовые кабели выше 1000 (В) — сопротивление изоляции должно достигать показателя не ниже 10 (МОм)
Низковольтные силовые кабели ниже 1000 (В) — сопротивление изоляции не должно достигать отметки ниже 0,5 (МОм)
Контрольные кабели — сопротивление изоляции не должно опускаться ниже 1 (МОм)
Алгоритм измерения сопротивления изоляции высоковольтных силовых кабелей.
Чтобы понять и упростить процесс выполнения работ по измерению сопротивления изоляции в высоковольтных силовых кабелях, рекомендуем порядок действий при замерах.
1. Проверяем отсутствие напряжения на кабеле при помощи указателя высокого напряжения
2. Ставим испытательное заземление с использованием специальных зажимов ка кабельные жилы с той стороны, где будем проводить измерение.
3. На другой стороне кабеля оставляем свободные жилы, при этом разводим их на достаточное расстояние друг от друга.
4. Размещаем предупреждающие информационные плакаты. Желательно поставить на другой стороне человека для наблюдения за безопасностью во время измерения мегаомметром.
5. Каждую жилу измеряем 1 минуту мегаомметром на 2500 (В) для получения показателей сопротивления изоляции силового кабеля.
Например, замеряем сопротивление изоляции на жиле фазы «С». При этом помещаем заземление на жилы фаз «В» и «А». Один конец мегаомметра подключаем к заземлению, или проще сказать к «земле». Второй конец — к жиле фазы «С».
Наглядно это выглядит так:
6. Данные измерений в процессе работы записываем в блокнот.
Методика измерения сопротивления изоляции низковольтных силовых кабелей.
Что касается измерения изоляции низковольтных силовых кабелей, то методика измерения незначительно отличается от описанной выше.
1. Проверяем отсутствие напряжения на кабеле с помощью защитных средств, предназначенных для работ в электроустановках.
2. С другой стороны кабеля, жилы разводим их на достаточное расстояние друг от друга и оставляем свободными.
3. Размещаем запрещающие и предупреждающие плакаты. Оставляем с другой стороны человека для наблюдения за безопасностью.
4. Измерение сопротивления изоляции низковольтного силового кабеля проводим мегаомметром на 2500 (В) по 1 минуте:
- между фазными жилами (А-В, В-С, А-С)
- между фазными жилами и нулем (А-N, В-N, С-N)
- между фазными жилами и землей (А-РЕ, В-РЕ, С-РЕ), если кабель пятижильный
- между нулем и землей (N-PE), предварительно отключив ноль от нулевой шинки
6. Полученные показатели измерений сопротивления изоляции фиксируем в блокноте.
Методика измерения сопротивления изоляции контрольных кабелей.
Особенностью измерения сопротивления изоляции контрольных кабелей является то, что жилы кабеля можно не отсоединять от схемы и делать замеры вместе с электрооборудованием.
Измерение сопротивления изоляции контрольного кабеля выполняется по уже знакомому алгоритму.
1. Проверяем отсутствие напряжения на кабеле с помощью защитных средств, которые предназначены для работ в электроустановках.
2. Измеряем сопротивления изоляции контрольного кабеля мегаомметром на 500-2500 (В) в такой последовательности.
Сначала совершаем подключение одного вывода мегаомметра к испытуемой жиле. Остальные жилы контрольного кабеля соединяем между собой и на землю. Ко второй выводу мегаомметра подключаем либо землю, либо любую другую не испытуемую жилу.
1 минуту производим замер испытуемой жилы. Потом эту жилу возвращаем к остальным жилам кабеля и поочередно измеряем каждую жилу.
3. Все полученные показатели измерения сопротивления изоляции контрольного кабеля фиксируем в блокнот.
Протокол измерения сопротивления изоляции кабеля.
Все вышеперечисленные электрические измерения, после получения данных сопротивления изоляции кабеля необходимо подвергнуть сравнительному анализу с требованиями и нормами ПУЭ и ПТЭЭП. На основании сравнения необходимо сформулировать вывод-заключение о пригодности кабеля к последующей эксплуатации и составить протокол измерения сопротивления изоляции.
{SOURCE}